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Differential Geometry 1 Definition of a Manifold

1 Definition of a Manifold

1.1 Regions

• A region (“open set”) is a set of D points in Rn such that together with each point p0, D also
contains all points sufficiently closer to p0, i.e.:

∀ p0 = (x10, . . . , x
n
0 ) ∈ D ∃ ϵ > 0,

st :p = (x1, . . . , xn) ∈ D, iff |xi − xi0| < ϵ.

• A region with out a boundary is obtained fro ma region D by adjoining all boundary points to D.
The boundary of a region is the set of all boundary points.

1.2 Differentiable Manifold

• A differentiable n-dimensional manifold is a set M together with the following structure on it.
The set M is the union of a finite or countably infinite collection of subsets Uq with the following
properties:

– Each subset Uq has defined on it co-ords xαq , α = 1, . . . , n called local co-ords by virtue of which
Uq is identifiable with a region of Euclidean n-space Rn with Euclidean co-ords xαq . The Uq

with their co-ord systems are called charts or local coordinate neighborhoods.

– Each non-empty intersection Uq ∩ Up of a pair of charts thus has defined on it two co-ord
systems, the restriction of xαp and xαq . It is required that under each of these coordinatizations
the intersection Uq ∩ Up is identifiable with a region of Rn and that each of these co-ordinate
systems be expressible in terms of the other in a one to one differentiable manner. Thus, if a
the transition functions from xαp to xαq and back are given by:

xαp = xαp (x
1
q , . . . , x

n
q ), α = 1, . . . , n

xαq = xαq (x
1
p, . . . , x

n
p ), α = 1, . . . , n

Then the Jacobian Jpq = det(∂xαp /∂x
α
q ) is non-zero on Up ∩ Uq.

1.3 Abuse of notation

• Regular partial derivative do not have the same “canceling” that total derivative have (dx∗dy/dx =
dy) But we can restore this property through Einstein summation convention. That is that:

n∑
γ=1

∂xαp
∂xγq

∂xγq

∂xβq
=
∂xαp
∂xγq

∂xγq

∂xβq
= δαβ

- 5 -



Differential Geometry 2 Elements of Topology

2 Elements of Topology

2.1 Topological space

• A topological space is a set X of points of which certain subsets called open sets of the topological
space, are distinguished, these open sets have to satisfy:

– The intersection of any two (and hence of any finite collection) open sets should again be an
open set.

– The union of any collection of open sets must again be open.

– The empty set and the whole set X must be open.

• The compliment of any open set is called a closed set of the topological space.

In Euclidean space Rn the “Euclidean topology” is the usual one where the open sets are the open
regions.

2.1.1 Induced topology

• Given any subset A ∈ Rn, the induced topology on A is that where the open sets are the intersections
A ∩ U , where U ranges over all open sets of Rn.

2.1.2 Continuity

• A map f : X → Y of one topological space to another is called continuous if the complete inverse
image f−1(U) of every open set U ⊂ Y is open in X.

2.1.3 Homeomorphic

• Two topological space are topologically equivalent or homeomorphic if there is a one to one and onto
map (bijective) between them, such that it and its inverse are continuous.

2.1.4 Topology on a manifold

• The topology on a manifold M is given by the following specifications of the open sets. In every
local co-ordinate neighborhood Uq the open regions are to be open in the topology on M; the totality
of open sets of M is then obtained by admitting as open, also arbitrary unions countable collections
of such regions, i.e. by closing under countable unions.

2.2 Metric space

• A metric space is a set which comes equipped with a “distance function” i.e. a real-valued function
ρ(x, y), defined on pairs x, y of its elements and having the following properties:

– Symmetry: ρ(x, y) = ρ(y, x).

– Positivity: ρ(x, x) = 0, ρ(x, y) > 0 if x ̸= y.

– The triangle inequality: ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

- 6 -



Differential Geometry 2 Elements of Topology

2.2.1 Hausdorff

• A topological space is called Hausdorff if any two points are contained in disjoint open sets. Any
metric space is Hausdorff because the open balls of radius ρ(x, y)/3 with centers at c, y do not
intersect.

All topological spaces we consider will be Hausdorff.

2.2.2 Compact

• A topological space X is said to be compact if every countable collection of open sets covering X
contains a finite sub-collection already covering X.

If X is a metric space the compactness is equivalent to the condition that from every sequence of
points of X a convergent sub-sequence can be selected.

2.2.3 Connected

• A topological space is connected if any two points can be joined by a continuous path.

2.3 Orientation

• A manifold M is said to be orientated of one can choose its atlas (collection of all the charts) so
that for every pair Up, Uq of intersecting co-ordinate neighborhoods the Jacobian of the transition
functions is positive.

• We say that the co-ordinate systems x and y define the same orientation if J > 0 and the opposite
orientation if J < 0.

- 7 -
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3 Mappings on Manifolds

3.1 Manifold mappings

• Amapping f :M → N is said to be smooth of smoothness class k if for all p, q for which f determines
functions ybq(x

1
p, . . . , x

m
p ) = f(x1p, .., x

m
p )bp, these functions are, where defined, smooth of smoothness

class k (i.e. all their partial derivatives up to those of k-th order exist and are continuous).

the smoothness class of f cannot exceed the maximum class of the manifolds.

3.2 Equivalent manifolds

• The manifolds M and N are said to be smoothly equivilent or diffeomorphic if there is a one to one
and onto map f such that both f :M → N and f−1 : N →M are smooth of some class k ≥ 1.

Since f−1 exits then the Jacobian Jpq ̸= 0 wherever it is defined.

3.3 Tangent vector

• A tangent vector to an m-dim manifold M at an arbitrary point x is represented in terms of local
co-ords xα−p by an m tuple ξα of components which are linked to the components in terms of any

other system xβq of local co-ords by:

ξαp =

(
∂xαp

∂xβq

)
x

ξβq , ∀ α (3.1)

• The set of all tangent vectors to an m-dim manifold M at a point x forms an m-dm vector space
Tx = TxM , the tangent space to M at the point x.

• Thus, the velocity at x of any smooth curve M through x is a tangent vector to M at x.

3.4 Push forward

• A smooth map f from M to N gives rise for each x to a push forward or an induced linear map to
tangent spaces:

f∗ : TxM → Tf(x)N

defined as sending the velocity at x of any smooth curve x = x(τ) on M to the velocity vector at
f(x) of the curve f(x(τ)) on N . If the map f is given by: yb = f b(x1, . . . , xm) for x ∈M and y ∈ N ,
then the push forward map f∗ is:

ξα → ηb =
∂f b

∂xα
ξα.

• For a real valued function f :M− > R, the push-forward map f∗ corresponding to each x ∈M is a
real valued linear function on the tangent space to M at x:

ξa → η =
∂f

∂xα
ξα

and it is represented by the gradiant of f at x, and is a co-vector or one form. Thus f∗ can be
identified with the differential df , in particular:

dxαp : ξα → η = ξαp

- 8 -
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3.5 Directional derivative

• We can associate with each vector ξ = (ξi) a linear differential operator as follows: Since the gradient
∂f
∂xi of a function f is a co-vector, the quantity:

∂ξf = ξi
∂f

∂xi

is a scalar called the directional derivative of f in the direction of ξ.

• Thus an arbitrary vector ξ corresponds to the operator:

∂ξ = ξi
∂

∂xi

So we can identify ∂
∂xi ≡ ei as the Canonical basis of the tangent space.

3.6 Riemann metric

• A Riemann metric on a manifold M is a point-dependent, positive-definite quadratic form on the
tangent vectors at each point, depending smoothly on the local co-ords of the points.

Thus at each point x = (x1p, . . . , x
m
p ) of each chart Up, the metric is given by a symmetric metric

gαβ(x
1
p, ..., x

m
p ), and determines a symmetric scalar product of pairs of tangent vectors at the point

x.

⟨ξ, η⟩ = g
(p)
αβ ξ

α
p η

β
p = ⟨η, ξ⟩ , |ξ|2 = ⟨ξ, ξ⟩

This scalar product is to be co-ordinate independent:

g
(p)
αβ ξ

α
p η

β
p = g

(q)
αβξ

α
q η

β
q

And therefor the coefficients g
(p)
αβ of the quadratic form transform as:

g
(q)
γδ =

∂xαp
∂xγq

∂xβp
∂xδq

g
(p)
αβ (3.2)

For a pseudo-Riemann metric M one just requires the quadratic form to be nondegenerate,(i.e. the
determinant of g is not 0). Note that 3.2 can be re-written as:

ds2 = g
(p)
αβdx

α
pdx

β
p = g

(q)
αβdx

α
q dx

β
q

Where ds is called a line element, and it is chart-independent. ds is used to measure the distance
between two infinitesimally close points.

- 9 -
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4 Tensors

4.1 Tensor def

• A tensor of type (k, l) and rank k + l on an m-dim manifold M is given each local co-ord system
(xip) by a family of functions:

(p)T i1,...,ik
j1,...,jl

(x) of the point x.

In other local co-ord (xiq) the components (p)T i1,...,ik
j1,...,jl

(x) of the same tensor are:

(p)T s1,...,sk
t1,...,tl

(x) =
∂xs1q

∂xi1p
· · ·

∂xskq

∂xikp

∂xj1p

∂xt1q
· · · ∂x

jl
p

∂xtlq
· (p)T i1,...,ik

j1,...,jl
(x)

4.2 Operations on Tensors

4.2.1 Permutation of indices

• Let σ be some permutation of 1, 2, . . . , l. σ acrs on the ordered tuple (j1, . . . , jl) as σ(j1, . . . , jl) =
(jσ1 , . . . , jσl

). We say that a tensor T̃ i1,...,ik
j1,...,jl

(x) =is obtained from a tensor T i1,...,ik
j1,...,jl

(x) by means of a
permutation σ of the lower indices if at each point of M :

T̃ i1,...,ik
j1,...,jl

(x) = T i1,...,ik
σ(j1,...,jl)

(x)

Permutation of upper indicies is defined similarly.

4.2.2 Contraction of indicies

• By the contraction of a tensor T i1,...,ik
j1,...,jl

(x) of type (k, l) with respect to the indcies ia, ja we mean
the tensor (summation over n):

T
i1,...,ik−1

j1,...,jl−1
(x) = T

i1,...ia−1,n,ia+1,...,ik
j1,...,ja−1,n,ja+1,...,jl

(x)

Of type (k − 1, l − 1)

4.2.3 Product of Tensors

• Given two tensors T =
(
T i1,...,ik
j1,...,jl

)
of type (k, l) and P =

(
P

i1,...,ip
j1,...,jq

)
of type (p, q), we define their

product to be the tensor product S = T ⊗ P of type (k + p, l + q) with components:

S
i1,...,ik+p

j1,...,jl+q
= T i1,...,ik

j1,...,jl
P

ik+1,...,ip
jl+1,...,jq

This multiplication is not commutative but it is associative.

• The result of applying the above three operations to tensors are again tensors.

- 10 -
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4.3 Co-Vectors

• Recall that the differential of a function f of x1, . . . , xn corresponding to the increments dxi in the
xi is:

df =
∂f

∂xi
dxi

Since dxi is a vector df has the same value in any co-ord system. In general, given any co-vector
(Ti), the differential form Tidx

i is invariant under change of chart. We can thus identify dxi ≡ ei as
the canonical basis of co-vectors or cotangent space.

4.4 Skew-Symmetric Tensor

• A skew-symmetric tensor of type (0, k) is a tensor Ti1,...,ik satisfying:

Tσ(i1,...,ik) = s(σ)Ti1,...,ik

where for all permutations s(σ) is the sign function. i.e. s(σ) = +1(−1) for even(odd) permutation.
If two indices of Ti1,...,ik are the same then the corresponding component of Ti1,...,ik is 0. This means
if k > n the tensor is automatically 0.

• The standard basis at a given point is:

dxi1 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik

Where:

dxi1 ∧ · · · ∧ dxik =
∑
σ∈Sk

s(σ)eiσ1 ⊗ · · · ⊗ eiσk

Here Sk is the symmetric group. i.e. the group of all permutations of k elements.

• The differential form of the skew-symmetric tensor (Ti1,...,ik) is:

Ti1,...,ike
i1 ⊗ · · · ⊗ eik =

∑
i1<i2<···<ik

Ti1,...,ikdx
i1 ∧ · · · ∧ dxik

=
1

k!
Ti1,...,ikdx

i1 ∧ · · · ∧ dxik

Where the last step can be made as both dxi1 ∧ · · · ∧ dxik and Ti1,...,ik are anti-symmetric.

4.5 Volume element

• A metric gij on a manifold is a tensor of type (0, 2) and on an oriented manifold of dim(M) = n
such a metric gives rise to a volume element :

Ti1,...,in =
√

|g|ϵi1, . . . , in, g = det(gij)

It is convenient to write the volume element in the notation of differential forms:

Ω =
√
|g|dx1 ∧ · · · ∧ dxn

If gij is Riemann then the volume V of M is:

V =

∫
M

Ω =

∫
M

√
|g|dx1 ∧ · · · ∧ dxn

- 11 -



Differential Geometry 4 Tensors

4.6 Generalized push forward

• We can generalize the push froward map we had on vectors earlier to the space of tensors (k, 0):

f∗ : ξ
i1,...,ik → ηa1,...,ak =

∂fa1

∂xi1
· · · ∂f

ak

∂xik
ξi1,...,ik

4.7 Pull back

• Let T
(0,k)
x M denote the space of tensors of type (0, k) at x ∈ M . Let f be a smooth map from M

to N . It gives rise to a map:

f∗ : T
(0,k)
f(x) N → T (0,k)

x M

which in terms of xi ∈ U ⊂M , and ya ∈ V ⊂ N is written as:

f∗ : ηa1,...,ak → ξi1,...,ik =
∂fa1

∂xi1
· · · ∂f

ak

∂xik
ηa1,...,ak

The map f∗ is called the pullback.

• We can then note the following relationship between pullbacks and push forwards. Let us denote
the action of a vector on another vector as follows:

ζ(θ) ≡ ζi1,..,ikθ
i1,...,ik

Then we can write that:

(f∗η)(ξ) =
∂fa1

∂xi1
· · · ∂f

ak

∂xik
ηa1,...,akξ

i1,...,ik = η(f∗ξ)

- 12 -
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5 Manifolds and surfaces

5.1 Immersion

• A manifold M of dim m is said to be immersed in a manifold N of dim n ≥ m if ∃ a smooth map
f : M → N such that the push forward map f∗ is at each point a one to one map of the tangent
space.

The map f is called the immersion of M to N .

Since f∗ is at each a point one to one map of the tangent space, in terms of local co-ords the Jacobian
matrix of f at each point has rank equal to m = dim M .

5.1.1 Embedding

• An immersion of M to N is called an embedding if it one to one. Then M is called a sub-manifold
of N .

• To see the difference between these two definitions note that a Klein bottle is immersed in R3 but not
embedded as its tangent spaces are distinct (intersecting points can have different tangent spaces)
but the map of points is not one- to one as there are cross overs.

5.2 Manifold with boundary

• A closed region A of a manifold M defined by an inequality:

f(x) ≤ 0, (orf(x) ≥ 0)

where f is a real-valued function on M . This region is a Manifold with boundary. It is assumed
that the boundary ∂A given by f(x) = 0 is a non-singular sub-manifold of M i.e. ∇f ̸= 0 on ∂A.

5.2.1 Closed manifold

• A compact manifold without a boundary is called closed.

5.3 Surfaces as Manifolds

• A Non-singular surface M of dimension k in n-dim Euclidean space is given by a set of n − k
equations:

fi(x
1, .., xn) = 0, i = 1, . . . , n− k

where ∀x the matrix
(

∂fi
∂xα

)
has rank n− k.

5.4 Orientation of surfaces

5.4.1 Orientation class

• Consider a frame τ1 = (e
(1)
1 , . . . , e

(1)
n ) called an ordered basis and another frame τ1 = (e

(2)
1 , . . . , e

(2)
n )

then we say that they lie in the same orientation class if detA > 0 and the opposite orientation
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class if detA < 0. Where A is defined as:

A : e
(1)
k :→ e

(2)
k

5.4.2 Orientability

• A manifold is said to be orientable if it is possible to choose at every point of it a single orientation
class depending continuously on the points.

A particular choice of such an orientation class for each point is called an orientation of the manifold,
and a manifold equipped with a particular orientation is said to be oriented.

If no orientation exists the manifold is said to be non-orientable

5.5 Two-sided hyper-surface

• A connected (n − 1)-dim sub-manifold of Rn is called two sided if a single valued continuous field
of unit normals can be defined on it.

such a sub-manifold is called a two-sided hyper-surface.
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6 Lie Groups

6.1 Group

• A group is a non-empty set G on which there is defined a binary operation (a, b) → ab satisfying
the following properties:

– Closure: If a and b belong to G, then ab ∈ G.

– Associativity: ∀a, b, c ∈ G, a(bc) = (ab)c.

– Identity: ∃ an element 1 ∈ G st: a1 = 1a = a, ∀a ∈ G

– Inverse: If a ∈ G then ∃ a−1 ∈ G st: aa−1 = a−1a = 1.

6.2 Lie Group

• A manifold G is called a Lie Group if it has given on it a group operation with the properties that
the maps φ : G → G, defined by φ(g) = g−1 and ψ : G × G → G defined by ψ(g, h) = gh, are
smooth maps.

6.3 Example of Lie groups

6.3.1 General Linear group

• This is GL(n,R) consisting of all n × n real matrices with non zero determinant in a region Rn2
.

dim GL(n,R) = n2.

6.3.2 Special Linear group

• This is SL(n,R) consisting of all n×n real matrices with determinant equal to 1. It is a hyper-surface
in Rn2

.

detA = 1, A ∈Mat(n,R)

dim SL(n,R) = n2 − 1.

6.3.3 Orthogonal group

• This is O(n,R) consisting of all n× n real matrices Satisfying:

AT ·A = I, A ∈Mat(n,R)

dim O(n,R) = 1
2n(n− 1).

6.3.4 Special Orthogonal group

• This is SO(n,R) consisting of all n× n real matrices Satisfying:

AT ·A = I, det(A) = 1, A ∈Mat(n,R)

dim SO(n,R) = 1
2n(n− 1).
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6.3.5 Pseudo Orthogonal group

• This is O(p, q, n) consisting of all n× n real matrices Satisfying:

AT · η ·A = η, det(A) = 1, η = diag{1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

}

dim O(p, q, n) = 1
2n(n− 1).

6.3.6 Unitary group

• This is U(n) consisting of all n× n complex matrices Satisfying:

A† ·A = I, A ∈Mat(n,C)

dim U(n) = n2.

6.3.7 Special Unitary group

• This is SU(n) consisting of all n× n complex matrices Satisfying:

A† ·A = I, det(A) = 1, A ∈Mat(n,C)

dim U(n) = n2 − 1.
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7 Projective spaces

7.1 Real protective space

• The real Projective space RPn is the set of all straight lines in Rn+1 passing through the origin.
Equivalently it is the set of equivalence classes of non-zero vectors in Rn+1 where two non-zero
vectors are equivalent if they are scalar multiples of one another.

• We may think of RPn as obtained from Sn by gluing, that is identifying diametrically opposite
points. This means we have the isomorphism RPn ≃ Sn/Z2.

7.2 Quaternions

• The set H of Quaternions consists of all linear combinations:

q ∈ H, q = a1+ bi+ cj + dk, a, b, c, d ∈ R

Where 1, i, j,k are linearly independent. Where these bases satisfy the following multiplications:

i · j = k = −j · i, j · k = i = −k · j, k · i = j = −i · k,
i · i ≡ i2 = −1, j · j ≡ j2 = −1, k · k ≡ k2 = −1,

i · 1 = i = 1 · i, j · 1 = j = 1 · j, k · 1 = k = 1 · k, 1 · 1 = 1.

This makes H an associative algebra over the field of real numbers.

7.3 Complex Projective spaces

• The complex projective space CP⋉ is the set of equivalence classes of non-zero vectors in C⋉+⊮ where
two nonzero vectors are equivalent if they are scalar multiples of one another.

• In a similar manner to the real projective space we can identify the isomorphism: C ≃ S2n+1/U(1).
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8 Lie Algebras

8.1 Neighborhood of identity element

• Let G be a Lie group. let the point g0 ≡ 1 ∈ G be the identity element of G, and let T = T(1) be the
tangent space at the identity element. We can now express the group operations on G in a chart
U0 containing g0 in terms of local co-ords. We choose co-ords in U0 so that the identity element is
the origin. g0 ≡ 1 = (0, . . . , 0). then if we let:

g1 = (x1, . . . , xn), g2 = (y1, . . . , yn), g3 = (z1, . . . zn)

Which allows us to define the product of two elements:

g1g2 = (ψ1(x, y), . . . , ψn(x, y)) = (ψi(x, y)) ∈ U0

An inverse as:

g−1
1 = (φ1(x), .., φn(x)) = (φi(x)) ∈ U0

These functions φ(x), ψ(x) satisfy:

ψi(x, 0) = ψi(0, x) = xi

ψi(x, φ(x))

ψi(x, ψ(y, z)) = ψi(ψ(x, y), z)

8.1.1 Taylor expansion

• Let ψi(x, y) be sufficiently smooth and for x, y, z ∼ ϵ:

ψi(x, y) =xi + yi + bijkx
jyk +O(ϵ3)

bijk =
∂2ψi

∂xj∂yk

∣∣∣∣
x=y=0

8.2 Commutator

• Let ξ, η ∈ T , and their components in terms of xi are ξi and ηi. Then we can define the commutator
[ξ, η] ∈ T is defined by:

[ξ, η]i = cijkξ
jηk, cijk ≡ bijk − bikj

• It has three basic quantities:

– It is bi-linear operation on the n-dim vector space T .

– Skew-symmetry: [ξ, η] = −[η, ξ].

– Jacoby identity: [[ξ, η], ζ] + [[ζ, ξ], η] + [[η, ζ], ξ]
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8.3 Lie Algebra

• A Lie algebra is a vector space G over a field F with a bi-linear operation [·, ·] : G ×G → G which is
called a commutator or a lie bracket, such that the three axioms above are satisfied.

• This means we can identify the tangent space of a Lie Group at the identity is with respect to the
commutator operation of a Lie algebra called the Lie algebra of the Lie group G.

• If we choose ξ = ej , η = ek, then combined with the fact that (em) = δnm, then we have:

[ej , ek]
i = cijkei

8.3.1 Structure Constants

• The constants cijk which determine the commutation operation on a Lie algebra, and which are
skew-symmetric in j, k are called the structure constants of the Lie algebra.
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9 One parameter subgroups

• A One parameter subgroup of a lie group G is defined to be a parametric curve F (t) on the manifold
G such that:

F (0) = 1, F (t1 + t2) = F (t1)F (t2), F (−t) = F−1(t)

The velocity vector at F (t) is:

dF

dt
=
dF (t+ ϵ)

dt

∣∣∣∣
ϵ=0

=
d

dϵ
(F (t)F (ϵ))

∣∣∣∣
ϵ=0

= F (t)
dF (ϵ)

dϵ

∣∣∣∣
ϵ=0

Hence:

Ḟ (t) = F (t)Ḟ (0) or F−1(t)Ḟ (t) = Ḟ (0)

i.e. the induced action of left multiplication by F−1(t) sends Ḟ (t) to Ḟ (0) = const ∈ T .

• conversely, ∀ A ∈ T the equation F−1(t)Ḟ (t) = A is satisfied by a unique one-parameter subgroup
F (t) of G. If G is a matrix group then F (t)− exp(At).

9.1 Co-ords of the first kind

• One parameter subgroups can be used to define so called canonical in a neighborhood of the identity
of a Lie group G.

• Let A1, . . . , An form a basis for the Lie algebra T . Then ∀ A =
∑

iAix
i ∈ T ∃ a one parameter

group F (t) = exp(At). To the point F (1) = exp(A) we assign as co-ords co-officiants x1, . . . , xn,
which gives us a system of co-ords in a sufficiently small neighborhood of g0 = 1 ∈ G. These are
called the canonical co-ords of the first kind.

9.2 Co-ords of the second kind

• Another system of co-ords is obtained by introducing Fi(t) = exp(At) and representing a point g
sufficiently close to g0 as:

g = F1(t1)F2(t2) · · · Fn(tn)

for small t1, ..., tn. Assigning co-ords x1 = t1, ..., x
n = tn to the point g, we get the canonical co-ords

of the second kind.
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10 Linear Representations

10.1 Representations

• A Linear representation of a group G of dimG = n is a homomorphism:

ρ : G→ GL(r,R), or ρ : G→ GL(r,C)

• Given a representation ρ of G the map:

χρ : G→ R, or G→ C

defined by:

χρ(g) = tr(ρ(g))

is called the character of the representation ρ.

• A representation ρ of G is said to be irreducible if the vector space Rr contains no proper subspace
invariant under the matrix group ρ(G).

10.1.1 Matrix Invariance

• A subspace W of the representation space Rr is called invariant under the matrix group ρ(G) (or
simply G invariant) if:

ρ(G)W ⊂W, ∀ g ∈ G

Then we can restrict ρ to W and get a subrepresentation.

10.2 Schur’s Lemma

• Let ρi : G → GL(ri,R), i = 1, 2 be two irreducible representations (irreps) of a group G. If
A : Rr1 → Rr2 is a linear transformation changing ρ1 to ρ2, i.e. stratifying:

Aρ1(g) = ρ2A, ∀ g ∈ G

Then either A is the zero transformation or else a bijection, in which case r1 = r − 2.

10.3 Push Forward Representation

• If G is a Lie group and a representation ρ : G→ GL(r,R) is a smooth map, then the push-froward
map ρ∗ is a linear map from the Lie algebra g = T(1) to the space of all r × r matrices:

ρ∗ : g →Mat(r,R)

It can then be shown that this means ρ∗ is a representation of the Lie algebra g, i.e. that it is a Lie
algebra homomorphism. Meaning it is linear and preserves the commutators ρ∗[ξ, η] = [ρ∗ξ, ρ∗η].

10.4 Faithful

• A representation ρ : G→ GL(r,R) is called faithful if it is one to one i.e. if its Kernel is trivial. So
ρ(g) ̸= I unless g = g0.

• If a Lie group has a faithful representation then it can be realized as a matrix Lie group.
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10.5 Inner automorphism

• For each h ∈ G the transformation G→ G defined by g → hgh−1 is called the inner automorphism.
of G determined by h.

• Any inner automorphism does not move the identity element. i.e. g0 = hg0h
−1 and therefor the

push forward (induced linear) map of the tangent space T to G at g0 is a linear transformation of
T denoted by:

Adh : T → T

it satisfies the following:

– Adg0 = id, where id is the identity transformation of T .

– Adh1Adh2 = Adh1h2 for all h1, h2 ∈ G. because h1h2gh
−1
2 h−1

1 = (h1h2)g(h1h2)
−1.

– Choosing h1 = h, h2 = h−1, we get that Adh−1 = Ad−1
h

• This means that the map h→ Adh is a linear representation of the group G. i.e. a homomorphism
to a group of linear transformations, Ad : G→ GL(n,R), h→ Adh = Ad(h). This representation of
G is called Adjoint.

10.6 One Parameter Adjoint

• Let F (t) = eAt be a one parameter subgroup of a Lie group G. Then AdF (t) is a one parameter
subgroup of GL(n,R).

The vector d
dtAdF (t)

∣∣∣
t=0

lies in the Lie algebra g ∼ Mat(n,R) of the Group GL(n,R) and can be

regarded as a linear operator.

• This operator is denoted adA and is given by:

adA : R → R, B → [A,B], B ∈ T ≃ Rn
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11 Simple Lie Algebras and Forms

11.1 Simple & Semi-Simple

• A Lie algebra g = {Rn, cijk} is said to be simple if it is non-commutative and has no proper ideals,
i.e. subspaces I ≠ g, 0 for which [I, g] ⊂ I.

• It is instead called semi-simple if we can write g = I1 ⊗I2 ⊗ · · · ⊗ Ik Where the Ij are ideals which
are simple as Lie algebras. These ideals are pairwise commuting [Ii, Ij ] = 0, i ̸= j.

A Lie group is defined to be simple or semi-simple according to its Lie algebra.

• A theorem that can be proven is that if the Lie algebra g of a Lie group G is simple, then the linear
representation Ad : G → GL(n,R) is irreducible, i.e. g has no proper invariant sub-spaces under
the group of inner automorphisms AdG.

11.2 Killing Form

• The Killing form on an arbitrary Lie algebra g is defined (up to a sign) by:

⟨A,B⟩ = −tr(adAadB)

• If the Killing form of a Lie algebra is positive definite then the Lie algebra is semi-simple.

• We also have that a Lie algebra is semi-simple if and only if its Killing form is non-degenerate.
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12 Group Actions

12.1 Left and Right actions

• We say that a Lie group G is represented as a group of transformations of a manifold M , or has a
left action on M if:

– There is associated with each of its elements g a diffeomorphism from M to itself. x 7→
Tg(x), x ∈M . Such that TgTh = Tgh, ∀ g, h ∈ G.

– Tg(x) depends smoothly on the arguments g, x i.e. the map (g, x) 7→ Tg(x) is a smooth map
from G×M →M .

• The Lie group is said to have Right action on M if the above definition is valid with TgTh = Thg.

12.2 Transitivity

• The action of a group G on M is said to be transitive if for every two points x, y ∈ M there exists
an element of G such that Tg(x) = y.

To show that an action of a group on a manifold is transitive it is sufficient to choose any point of
M as a reference point x0, and to prove that for any point y ∈ M there exists an element g ∈ G
such that y = Tg(x0).

12.2.1 Homogeneity

• A manifold on which a Lie group acts transitively is called a homogeneous space of the Lie group.

• In particular, G is a homogeneous space for itself, e.g. as h → Tg(h) = gh, h ∈ G. G is called the
principle homogeneous space.

12.2.2 Isotropy group

• Let x be any point of a homogeneous space M of a Lie group G. The isotropy group (or stationary
group) Hx of the point x is the stabilizer of x under the action of G:

Hx = {h|Th(x) = x}

• All isotropy groups Hx of points x of a homogeneous space are isomorphic.

• There is a one to one correspondence between the points of a homogeneous space M of a group G,
and the left cosets gH of H in G, where H is the isotropy group and G acts on the left. Thus we
can write M ≃ G/H, i.e. M is a diffeomorphic to the quotient space G/H.

12.3 Examples of Homogeneous spaces

12.3.1 Stiefel manifolds

• For each n, k the Stiefel manifold Vn,k has as its points all orthonormal k-frames x = (e1, . . . , ek) of
k vectors ea in Rn.

• The dimension of Vn,k is nk − 1
2k(k + 1) and Vn,k ≃ O(n)/O(n− k) ≃ SO(n)/SO(n− k).
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12.3.2 Real Grassmanian manifolds

• The points of Gn,k are the k dimensional planes passing through the origin of Rn.

• It can be shown that Gn,k ≃ O(n)/(O(k)×O(n− k)) ≃ Gn,n−k. The dimension of Gn,k is (n− k)k
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13 Vector Bundles

13.1 Tangent Bundle

• The tangent bundle T (M) of an n dimensional manifold M is a 2n dimensional manifold defined as
follows:

– The points of T (M) are the pairs (x, ξ), x ∈M, ξ ∈ TxM .

– Given a chart Uq of M with the local co-ords (xiq), the corresponding chart UT
q of T (M) is the

set of all pairs (x, ξ) where:

x = (x11, . . . , x
n
q ) ∈ Uq, ξ = ξiq

∂

∂xiq
∈ TxM

with local co-ords (y1q , . . . , y
2n
q ) = (x1q , . . . , x

n
q , ξ

1
q , . . . , ξ

n
q ) = (xiq, ξ

i
q).

• This tangent bundle is a smooth oriented manifold.

13.2 Cotangent Bundle

• The cotangent bundle T ∗(M) of an n dimensional manifold M is a 2n dim manifold defined as
follows:

– The points T ∗(M) are the pairs (x, p), x ∈M and p a co-vector at the point x, so p ∈ T ∗
xM .

– Given a chart Uq of M with the local co-ords (xiq), the corresponding chart UT ∗
x of T ∗M is the

set of all pairs (x, p), where:

x = (x11, . . . , x
n
q ) ∈ Uq, p = pqidx

i
q ∈ T ∗

xM

with local co-ords (y1q , . . . , y
2n
q ) = (x1q , . . . , x

n
q , pq1, . . . , pqn) = (xiq, pqi).

• This cotangent bundle is a smooth oriented manifold.

13.3 Symplectic Manifold

• The existence of a metric on M gives rise to a map:

T (M) → T ∗(M) : (xi, ξi) 7→ (xi, gijξ
i)

• Since ω = pidx
i, a differential one-form on M , is invariant under a change of co-ords of T ∗(M), it

is a differential form on T ∗(M).

Its differential Ω = dω = dpi ∧ dxi is a non-degenerate closed,(dΩ = 0), 2-form on T ∗(M).

• Thus T ∗(M) is a symplectic manifold, i.e. it is equipped with a closed non-degenerate 2-form.
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14 Vector and Tensor Fields

14.1 Vector Field

• A vector field is a map that specifies a unique vector at each point x of the manifold M :

ξ :M → T (M), x 7→ ξx ∈ TxM

A vector field intersects each tangent space of T (M) at one and only one point, i.e. a vector field is
a curve which is no-where parallel to a tangent space. It is a cross section of T (M).

• A vector field can be understood as a differential operator that maps a scalar function to a scalar
function on M :

ξ(f) = ξi
∂f

∂xi
.

• These maps are linear and satisfy the Leibniz rule. This means they are derivations.

14.2 Tensor Field

• A Tensor field of type (r, s) assigns a unique tensor of type (r, s) to each point x of the manifold
M :

(r,s)ξ :M → T (r,s)(M), x 7→(r,s) ξx ∈ T (r,s)
x M

. It is a cross section of T
(r,s)
x M .

14.3 Commutator or Lie Bracket

• Consider the composition ξ(η(f)) = ξi ∂
∂xi

(
ηi ∂f

∂xj

)
= ξi ∂η

j

∂xi
∂f
∂xj + ξ

iηj ∂2f
∂xi∂xj . The second term makes

this not a vector field.

• This motivates us to define the commutator or Lie Bracket define by:

[ξ, η](f) ≡ ξ(η(f))− η(ξ(f)) =

(
ξi
∂ηj

∂xi
− ηi

∂ξj

∂xi

)
∂f

∂xj

This is a vector field that satisfies:

[ξ, η] = −[η, ξ]

[ξ, η + ζ] = [ξ, η] + [ξ, ζ]

[ξ, fη] = f [ξ, η] + ξ(f)η

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0

Thus thee vector space equipped with the commutator operation is an infinite dimensional Lie
algebra.
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14.4 Integral curves

• let ξi(x) bee a vector fie;d onM . Consider the autonomous (meaning the equations have no explicit
dependence on t) system of differential equations:

ẋi ≡ dxi

dt
= ξi(x1(t), . . . , xn(t)), i = 1, . . . , n

• The solutions xi(t) to this system are called the integral curves of the vector field ξi. The vector
field ξi(x) is comprised of tangent vector to the integral curves.

14.4.1 Flows and Velocity Fields

• A local abelian one parameter subgroup of diffeomorphisms Ft is called the flow generated by the
vector field ξi. Where F i

t (x
1
0, . . . , x

n
0 ) = xi(t, x10, . . . , x

n
0 ).

• This can be reversed to say that given a one parameter local group of diffeomorphisms we can define
its velocity fields to be thee vector field:

ξi =

(
d

dt
F i
t

)
• Note that in general two flows do not commute and in fact the commutator measures thee discrep-
ancy between the points obtained by following the integral curves of two different vector fields in
different orders.

• The vectors comprising a co-ord induced basis commute because all the partial derivatives do, The
converse is also true, if all the elements of a basis for vector fields commute then the basis is
co-ordinate induced.

14.5 Exponential function of Vector Fields

• A one parameter subgroup of diffeomorphisms Ft(x) with associated vector field ξ(x) is defined to
act on smooth functions f = f(x) as follows:

(Ftf)(x) = f(Ft(x)).

• The exponential function of a vector field ξ is the operator:

exp(t∂ξ) = 1 + ∂ξ +
t2

2
(∂2ξ ) + . . .

Where ∂ξ is the directional derivation operator in the direction of ξ.

• The action of et∂ξ on functions f(x) is defined as:

exp(t∂ξ)f = f + ∂ξf +
t2

2
(∂2ξ )f + . . .

‘ ∀ t for which this series converges.

• For analytic vector fields ξ(x) and analytic functions f(x) the exponential function of ξ(x) i.e. et∂ξ ,
coincides for sufficiently small t with the action of Ft on f :

e∂ξf = f(Ft(x))
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15 The Lie Derivative

• The motivation for this is that we want to define the action of a flow Ft generated by ξ on Tensors.
The problem with this is that we have no way of comparing tensors at different points on the
manifold. To fix this we switch to active transformations where the points xi stay fixed and we
instead change the co-ordinate system by acting on the basis with F−1

t = F−t.

15.1 Action of Flows on Tensors

• A one parameter subgroup of diffeomorphisms Ft(x) with associated vector field ξ(x) is defined to

act on smooth tensors T = (T
i1,..,ip
j1,...,jq

) of type (p, q) as follows:

(FtT )
i1,..,ip
j1,...,jq

(x) = T
k1,..,kp
l1,...,lq

(y)
∂yl1

∂xj1
· · · ∂y

l1

∂xjq
∂xi1

∂yk1
· · · ∂x

ip

∂ykp

Where yi = F i
t (x).

15.2 Lie Derivative

• The Lie derivative of a tensor T = (T
i1,..,ip
j1,...,jq

) along a vector field ξ is the tensor LξT given by:

LξT
i1,..,ip
j1,...,jq

=

[
d

dt
(FtT )

i1,..,ip
j1,...,jq

]
t=0

15.2.1 Killing Vector

• If a vector ξ satisfies Lξgij = 0, where gij is the metric, then ξ is called a Killing Vector.

• A lemma of this definition is that the Killing vector fields of a (psudo-)Riemann manifold form a
Lie algebra with respect to the Lie bracket given by the commutator of the two fields.

L[ξ,η]gij = [Lξ,Lη]gij = 0
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16 Covariant Differenciation

• We need to define a different type of differenciation as πµ
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