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“If photons study physics, maybe they would come up with spinors”

-Chaolun Wu
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Quantum Field Theory I 1 The Need for Fields

1 The Need for Fields

In this section we will see where regular quantum mechanics fails and what we need to do to fix it.

1.1 Non-relativistic free particle

• We can recall from QM that the probability of a particle at point x at time t propagating to x′ at time
t′ is given by:

⟨x| e−iH(t−t′) |x′⟩ (1.1)

Here H is the Hamiltonian. For a Non-relativistic free particle we have that H = P̂
2
/2m. We can then

go about solving dor this propagator with this Hamiltonian in the usual way. This involves inserting

the identity
∫ d3p

(2π)3
|p⟩ ⟨p| = I into the above propagator 1.1before the |x′⟩

⟨x| e−iH(t−t′) |x′⟩ =
∫

d3p

(2π)3
⟨x| e−i

P̂
2

2m
(t−t′) |p⟩ ⟨p|x′⟩

Then if we recall that ⟨p|x′⟩ = e−ip·x
′
, ⟨x|p⟩ = eip·x and e−i

P̂
2

2m
(t−t′) |p⟩ = e−i

p2

2m
(t−t′) |p⟩. We get:

⟨x| e−iH(t−t′) |x′⟩ =
∫

d3p

(2π)3
e−i

p2

2m
(t−t′)eip·(x−x′)

=

(
m

2πi(t− t′)

)3/2

e
im

(x−x′)2
2(t−t′)

• What this is saying, is that for any two points x and x′, no matter how far they are separated, have a
non-zero probability of propagation from one to another. But this is direct contrast with what we know
from special relativity! Two points separated by enough distance so that there space time interval,
∆s2 = (t− t′)2 − |x− x′|2 is negative, i.e. space like. Which would require a propagation speed faster
then light.

1.1.1 Non-trivial Gaussian integral

• In the above calculation we have to evaluate the following integral:∫ ∞

∞
e−(p+ia)2dp

Now we may think we can just make the substitution u = p + ia, but since we are involving complex
numbers, we get a non trivial problem with the limits, as they change to ∞− ia and ∞ + ia. What
we can do instead is calculate the integral of a closed contour. Since the integrand above has no poles,
we know that any closed contour on the complex plain should evaluate to 0. What we will do is then
modify the limits of our integral to be from −q to q, we will take the limit at the end to recover what
we got. We can then integrate along the following path: We start at q+ ia and move to −q+ ia, then
from −q + ia to −q, from −q to q and from q to q + ia. This is a closed contour, that we will call C.
We then have that:

0 =

∫
C
e−z

2
dz =

∫ −q+ia

q+ia
e−(x)2dx+

∫ 0

a
e−(−q+iy)2dy +

∫ q

−q
e−x

2
dx+

∫ a

0
e−(q+iy)2dy
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Quantum Field Theory I 1 The Need for Fields

We can then immediately argue that the second and fourth integrals should vanish when we send q to
infinity. Then the first integral we can reverse the limits and pick up a minus sign so:∫ q+ia

−q+ia
e−(x)2dx =

∫ q

−q
e−x

2
dx =

√
π

And then finally now we can make a u-substitution of the LHS, to get back our original integral! So
we can see in this case that since the two ends of this contour vanished in the arge q limit we are
essentially able to move our contour up and down to get the regular Gaussian integral.

Relativistic free particle

• But we can chalk this up to a mistake. We were not considering the Hamiltonian of a relativistic

free particle. That is, with the Hamiltonian H =
√
P2 +m2. The propagator in a similar manner to

before then becomes:

⟨x| e−i
√

P2+m2(t−t′) |x′⟩ =
∫

⟨x|p⟩ e−i
√

P2+m2(t−t′) ⟨p|x′⟩ d3p

(2π)3

=

∫
d3p

(2π)3
e−i

√
p2+m2(t−t′)+ip·(x−x′)

We can then parametrize the angle part of this integral by letting θ be the angle between p and (x−x′),
we can also further parametrize this with η = cos θ:

⟨x| e−i
√

P̂
2
+m2(t−t′) |x′⟩ =

∫ ∞

0

p2dp

(2π)2

∫ 1

−1
dηe−i

√
p2+m2(t−t′)+ip|x−x′|η

=

∫ ∞

0

p2dp

(2π)2
e−i

√
p2+m2(t−t′) 1

ip|x− x′|

(
eip|x−x′| − e−ip|x−x′|

)
We can then turn this into an integral from −∞ to ∞ with a factor of 2:

=
−i

2π2|x− x′|

∫ ∞

0
pdp e−i

√
p2+m2(t−t′)+ip|x−x′| (1.2)

1.1.2 Laplace steepest decent

• We can then use a useful approximation of integrals of this form by expanding around critical points.
That is points x0 where f ′(x0) = 0. The approximation is as follows, for a critical point x0 of f(x):

∫ ∞

−∞
h(x)eAf(x)dx =

∫ ∞

−∞
h(x)eA[f(x0)+

1
2
f ′′(x0)(x−x0)2+O((x−x0)3)]dx

≈ h(x0)e
Af(x0)

∫ ∞

−∞
e−A

1
2
|f ′′(x0)|(x−x0)2dx =

√
2π

A|f ′′(x0)|
h(x0)e

Af(x0)

• Where we have assumed x0 is a global maxima so that f ′′(x0) ≤ 0. This approximation works well as
the exponential ensures that any small deviation from x0 contributes very little to the integral. It of
course depends also on h(x) being ”well behaved”.

- 6 -



Quantum Field Theory I 1 The Need for Fields

• Back to the relevant integral 1.2, we can see that for us f(p) = −i
√
p2 +m2(t − t′) + ip|x − x′| and

h(p) = p. So we find the stationary point of f(p) via f ′(p0) = 0:

f ′(p0) =
−p0(t− t′)√
p20 +m2

+ |x− x′| = 0 =⇒ p20 =
m2|x− x′|2

(t− t′)2 − |x− x′|2

Then we can evaluate f(p0):

f(p0) = −i

√
m2|x− x′|2

(t− t′)2 − |x− x′|2
+m2(t− t′) + i

√
m2|x− x′|2

(t− t′)2 − |x− x′|2

= −m(|x− x′|2 − (t− t′)2)√
|x− x′|2 − (t− t′)2

= −m
√
|x− x′|2 − (t− t′)2

Where we have used the fact that we are considering probabilities outside the light-cone, i.e. where
|x− x′| > (t− t′), so that the square root

√
(t− t′)2 − |x− x′|2 = i

√
|x− x′|2 − (t− t′)2 .

• With this we can now use Laplace’s steepest decent integral approximation to write:

⟨x| e−i
√

P̂
2
+m2(t−t′) |x′⟩ ∝ h(p0)e

f(p0) ∝ e−
√

|x−x′|2−(t−t′)2

This again does not solve our problem, we have that there is a non-zero probability of propagating to
outside the light-cone. Some more radical approach is needed to solve this problem.

1.2 Field theory EoM

• The Idea will be to go from dealing with particle, to waves. For this we need to generalize our idea
of action being the integral of a Lagrangian over time to being the integral of a Lagrange density over
time and space as a field is spread out, not localized. This means:

S =

∫
L(qi, q̇i, t)dt→

∫
d4xL(φ(x, t), ∂µφ(x, t))

We then have to vary this action to set δS = 0:

δS =

∫
d4x

(
δL
δφ
δφ− δL

δ∂µφ
δ∂µφ

)
=

∫
d4x

(
δL
δφ

− ∂µ

(
δL
δ∂µφ

))
δφ

=⇒ δL
δφ

− ∂µ
δL
δ∂µφ

= 0 (1.3)

Where we have integrated by parts the second term.

1.3 Non-degenerate Lagrangian

• It is often the case, that when we have constructed our Lagrangian, that we would like to perform a
Legendre transform from the variables q and q̇, to q and p. This is gives us our Hamiltonian and takes
the form H =

∑
i piq̇i − L(q, q̇). In doing this we are required to solve for q̇ in terms of q and p. But

this is not always possible, for example given the Lagrangian L ∝ q̇ =⇒ p = ∂L
∂q = 1, so we are unable

to solve for q̇(p, q). It turn out the condition for us to always be able to solve for q̇ is as follows:

- 7 -



Quantum Field Theory I 1 The Need for Fields

If we denote the matrixMij =
∂2L
∂q̇i∂q̇j

, then the condition becomes, we can solve for q̇i ⇐⇒ det(M) ̸= 0.
The Lagrangian can then be written as:

L =
∑
i,j

Mij∂q̇
i∂q̇j , and q̇i =

∑
j

M−1
ij pj

This is called a Non-degenerate Lagrangian.

1.4 Hamiltonian field theory

• We wish to find a Hamiltonian for our field theory. The best way to go about extending our definition
of H =

∑
i piq̇i − L(q, q̇), is to think of space as a discretized space, as we had the co-ordinates q

indexed by i. We can then calculate:

p(x) =
∂L

∂ϕ̇
=

∂

∂ϕ̇(x)

∑
y

L(ϕ(y), ϕ̇(y))d3y = π(x)d3x.

Where:

π(x) =
∂L
∂ϕ̇(x)

(1.4)

This is called the momentum density conjugate to ϕ(x). We can now write the Hamiltonian as:

H =
∑
x

p(x)ϕ̇(x)− L

Which in the continuum limit becomes:

H =

∫
d3x[π(x)ϕ̇(x)− L] ≡

∫
d3xH (1.5)

1.5 Noether’s Theorem

• We are used to Noether’s Theorems relation between symmetries and conservation in the context of
particles. We will now discuss this in the context of fields. If we have an infinitesimal transformation
of fields taking the form:

ϕ(x) → ϕ′(x) = ϕ(x) + α∆ϕ(x)

Here α is small. This transformation is a symmetry if it results in the same EoM, i.e. leaves the action
unchanged. This means the Lagrangian must be the same up to the addition of a total derivative,
which in this context is the 4-gradient:

L(x) → L(x) + α∂µJ µ(x)

Where J µ is some 4-vector. We can then find the expected form of ∆L(ϕ, ∂µϕ):

α∆L =
∂L
∂ϕ

(α∆ϕ) +

(
∂L

∂(∂µϕ)

)
∂µ(α∆ϕ)

= α∂µ

(
∂L

∂(∂µϕ)
∆ϕ

)
+ α

[
∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)]
∆ϕ

- 8 -
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We can then recognize that the second term vanished via our EoM 1.3, so we can set the remaining
term to α∂µJ µ(x), which is equivalent to:

∂µj
µ(x) = 0, for jµ(x) =

∂L
∂(∂µϕ)

∆ϕ− J µ (1.6)

• If the symmetry involves more then one field the first term above should be a sum of those terms, for
the different fields. This conservation law also implies that there is a charge constant in time namely:

Q ≡
∫
j0d3x (1.7)

1.6 Stress-Energy Tensor

• We can also consider transformations of space itself, for example, translations or rotations. This takes
the for xµ → xµ − aµ, which has the following affect on the fields (when infinitesimal):

ϕ(x) → ϕ(x+ a) = ϕ(x) + aµ∂µϕ(x)

The Lagrangian must also transform in the same way as it is also a scalar:

L(x) → L(x+ a) = L(x) + aν∂µ(δ
µ
νL(x))

We can then recognize the δµνL(x) as ∼ J µ from 1.6, however since the change in the scalar field became
a vector ∆ϕ→ ∂µϕ(x), then we must add a second index to our J µ → J µ

ν . This is for the reason for
the δµν in the above expression and means our conserved vector jµ becomes a conserved tensor of the
form:

∂µT
µ
ν(x) = 0, for Tµν(x) =

∂L
∂(∂µϕ)

∂νϕ− δµνL

This is the Stress-Energy Tensor also called the Energy-Momentum Tensor. We can then notice that
the conserved charge associated with the time translations is nothing more then out Hamiltonian:∫

T 00d3x =

∫ (
∂L
∂ϕ̇

ϕ̇− L
)
d3x =

∫
Hd3x = H

Similarly for space translation the conserved charges are the physical momenta, not to be confused
with the canonical momentum. ∫

T 0id3x =

∫
Pid3x = Pi

- 9 -



Quantum Field Theory I 2 The Klein-Gordon Field

2 The Klein-Gordon Field

• We ease ourselves into the concepts of quantum fields with the discussion of the Klein-Gordon field.
This is one of the simplest types of fields and its use becomes obvious when we see the EoM, which
is just the Schrödinger equation but made relativistic by replacing p̂2/2m →

√
p̂2 +m2. We will see

more of this later.

• The Lagrange density for the Klein-Gordon field takes the form:

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 (2.1)

From this we can calculate the momentum density via 1.4 to get π = ϕ̇. And thus via 1.5 the
Hamiltonian density is:

H =
1

2

(
π2 + (∇ϕ)2 +m2ϕ2

)
(2.2)

• The equations of motion can also be calculated easily via 1.3 resulting in the Klein-Gordon equation:

(∂µ∂
µ +m2)ϕ = 0 (2.3)

This ∂µ∂
µ is often denoted □. As an aside, if we ”make” the Schrödinger equation relativistic, i.e.

p2 +m2 = E2 and use the definition of the operators i∂tψ = Eψ and p̂ = −i∇, so: −∇2 +m2 = −∂2t ,
recovering us the above Klein-Gordon equation.

2.1 Second Quantization

• We will now see if we can “quantize” this field. What we can do to help figure out how to do this is
to take inspiration from the quantization of the single particle Harmonic oscillator in QM. This works
nicely as we can see the Lagrangian density for the Klein-Gordon field 2.1 resembles that of the harmonic
oscillator. By quantize here we mean to reinterpret the dynamical variables as operators that obey
canonical commutation relations, like [pi, qj ] = iδi,j , [qi, qj ] = 0 = [pi, pj ]. Instead however ϕ and π will
become our operators and we will require that [ϕ(x), π(y)] = iδ(x−y), [ϕ(x), ϕ(y)] = 0 = [π(x), π(y)].
This procedure is often called Second Quantization to distinguish it from the old one particle version.

• Our goal is to now find the spectrum of the Hamiltonian. We start by taking our field ϕ(x) and writing
it in terms of its Fourier transform to momentum (p)-space

ϕ(x) =

∫
d3p

(2π)3
ϕ(p)eip·x

Here we also require that ϕ(x, t) is real so ϕ∗(p) = ϕ(−p) Then using the Klein-Gordon equation 2.3
we get the condition: [

∂2t + p2 +m2
]
ϕ(p) = 0

Where we have acted the −∂2i from □ on the exponential to pull out the p2 This equation of motion

is the same as that of a harmonic oscillator with frequency ωp =
√
p2 +m2.

• We now recall from QM that in order to solve the harmonic oscillator we introduced the creation
(â†) and annihilation (â) operators, so that we could write q̂ = 1√

2ω
(â + â†) and p̂ = −i

√
ω
2 (â − â†).

This then meant the Hamiltonian took the form H = 1
2(p̂

2 + ω2q̂2) = ω(â†â + 1
2) and also that the

commutators were: [H, â†] = ωâ† , [H, â] = −ωâ and [a, a†] = I.
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• This can be done for our field ϕ, except we have to consider that q̂ = 1√
2ω

(â + â†) is a function of

momentum as for us we have ωp =
√
p2 +m2. We can then recall that since we expect ϕ to be real we

require that ϕ†(p) = ϕ(−p), this means we should have ϕ(p) ∝ ap + a†−p as then ϕ(p)† ∝ a†p + a−p ∝
ϕ(−p). This means our corresponding expression for ϕ should take the form:

ϕ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ap + a†−p

)
eip·x (2.4)

π(x) = −i
∫

d3p

(2π)3

√
ωp

2

(
ap − a†−p

)
eip·x (2.5)

We can also think of this expression as each Fourier mode of the field being treated as an independent
oscillator with its own a and a† (which will also be a function of the momentum). We can then isolate
the second term in this integral and change p to −p, since we are integrating over all momentum space,
this just results in the signs of the p’s in the term changing so we can write:

ϕ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

ip·x + a†pe
−ip·x

)
(2.6)

In a similar manner the momentum density can be written as:

π(x) = −i
∫

d3p

(2π)3

√
ωp

2

(
ape

ip·x − a†pe
−ip·x

)
(2.7)

2.1.1 Commutators

• We can then go about checking the commutator [ϕ(x), π(x′)] = iδ(x−y) which should be equivalent to

the the new creation and annihilation operators satisfying [ap, a
†
p′ ] = (2π)3δ(p− p′). Using the above

definitions 2.4 and 2.5 for this calculation is easier, resulting in:

[ϕ(x), π(x′)] = − i

2

∫
d3pd3p′

(2π)6

√
ωp′

ωp

[
−apa†-p′ + a†-pap′ − (−a†p′a-p + apa

†
-p′)
]
ei(p·x+p′·x′)

= − i

2

∫
d3pd3p′

(2π)6

√
ωp′

ωp

[
[a†-p, a-p′ ]− [ap, a

†
-p′ ]
]
ei(p·x+p′·x′)

= − i

2

∫
d3pd3p′

(2π)6

√
ωp′

ωp
(2π)3

[
−δ(p′ + p)− δ(p+ p′)

]
ei(p·x+p′·x′)

= i

∫
d3p

(2π)3
eip·(x−x′) = iδ(x− x′)

(2.8)

Where we have used the fact that ωp = ω-p by definition. We can then also calculate the Hamiltonian
via 2.2:

H =
1

2

∫
d3x

∫
d3pd3p′

(2π)6

[−√
ωpωp′

2

(
ap − a†-p

)(
ap′ − a†-p′

)
+
−p · p′ +m2

2
√
ωpωp′

(
ap + a†-p

)(
ap′ + a†-p′

)]
eix·(p+p′)
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We can then notice that the x part of this integral creates a delta function
∫
d3xeix·(p+p′) = (2π)3δ(p+

p′), so p = −p′. This allows us to write:

H =
1

4

∫
d3p

(2π)3
ωp

[
−
(
ap − a†-p

)(
a-p − a†p

)
+
(
ap + a†-p

)(
a-p + a†p

)]
=

1

2

∫
d3p

(2π)3
ωp

[
apa

†
p + a†-pa−p

]
We can then for this second term do the same trick of changing p → −p, which does not affect the
integral’s value as ωp = ω−p. Then also using the fact that a†pap = apa

†
p − [ap, a

†
p] we get the final

result that:

H =

∫
d3p

(2π)3
ωp

[
apa

†
p − 1

2
[ap, a

†
p]

]
(2.9)

If we stop to think about the second term in this expression we realize something strange, [ap, a
†
p] =

(2π)3δ(0), which is and infinite constant (constant as in it wont affect any state we act H on). But
since this is constant we can never measure it experimentally as we only ever measure the energy shift
between two different energies. We can also think of this as the zero point energy for each point in
space, except that we made this space continuous resulting in infinite many oscillator ground states,
so what did we expect really? This means we can ignore the second term in 2.9.

To make sure everything is consistent we also check the commutators, [H, a†p] = ωa†p , [H, ap] = −ωap:

[H, ap] =

∫
d3p′

(2π)3
ωp′

[
ap′a†p′ap − apa

†
p′ap′

]
=

∫
d3p′

(2π)3
ωp′

[
ap′apa

†
p′ − ap′ [ap, a

†
p′ ]− apap′a†p′

]
= −ωpap

Here we have used the fact that [ap, ap′ ] = 0 = [a†p, a
†
p′ ] to make the first and last term cancel. The

commutator [H, a†p] = ωpa
†
p, can be calculated in the same manner.

• We can now start to think about the creation and annihilation operators as their name suggests. The
ground state is |0⟩ st. ap |0⟩ = 0 and has E = 0, where as acting with a†p increases the energy. These
operators clearly depend on momentum p so we can think of them as creating (and annihilating)
momentum eigenstates.

2.2 Particle creation

• The next step is to see if we can write out all the possible momentum states as powers of the creation
operator a†p. The question is then what is the choice of proportionality? We should of course have that
the states are normalized, that is ⟨p|p′⟩ = δ(p − p′). This however, leads to a problem, namely that
this quantity δ(p − p′) is not Lorentz invariant. To see why, consider a boost along the x3 direction.
Using the property that δ(f(x)− f(x0)) = δ(x− x0)/|f ′(x0)| we have that if we boost from momenta
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p,p′ → p̃, p̃′,so that p̃3 = γ(p3 + βE) and Ẽ = γ(E + βp3). Then we have that:

δ(p− p′) = δ(p̃− p̃′)
dp̃3
dp3

= δ(p̃− p̃′)
dγ(p3 + βE)

dp3

= δ(p̃− p̃′)γ

(
1 + β

dE

dp3

)
= δ(p̃− p̃′)

γ

E
(E + βp3)

= δ(p̃− p̃′)
Ẽ

E

Where we have used E2 = |p|2+m2 to do the second last step. We can see from this that if we choose

the normalization |p⟩ =
√

2Epa
†
p |0⟩ then ⟨p|p′⟩ is Lorentz invariant, as needed.

• With this we can consider the action of ϕ on the ground state |0⟩. Via 2.6 this becomes:

ϕ(x) |0⟩ =
∫

d3p

(2π)3
1

2Ep
e−ip·x |p⟩

Where from here and now on we replace ωp with Ep. This is similar to the Fourier expansion we have
of |x⟩ in regular QM, except for the factor of 1/Ep, which is almost constant in the non-relativistic,
so we can put forward the interpretation that the operator ϕ(x) acting on the vacuum |0⟩, creates a
particle at position |x⟩.

2.3 Time evolution

• We would now like to turn our heads to adding time evolution to our fields. So far we have been
working in the Schrödinger picture and interpreted the resulting theory in terms of particles. We now
switch to the Heisenberg picture where it is simpler to add time dependence.

We know the time evolution operator is a unitary operator U(t), st. ϕ(x) = ϕ(x, t) = U †ϕ(x)U . For a
time independent Hamiltonian we just have the usual U = e−iHt. If we want to calculate ϕ(x) we will
need to know what a(p, t) = eiHtape

−iHt is. We know that [H, ap] = −Epap. So we can write:

Hap = [H, ap] + apH = ap(H − Ep)

=⇒ Hnap = ap(H − Ep)
n

Where we can do the last step as H commutes with both itself and Ep, so acting with further H’s

from the left only yields more of the same factor. Similarly this means Hna†p = a†p(H + Ep)
n. This

then means that:

eiHtape
−iHt = ape

−iEpt, eiHta†pe
−iHt = a†pe

−iEpt (2.10)

This means using 2.6 we can write ϕ(x) as:

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipµxµ + a†pe
ipµxµ

)
(2.11)

Where in the 4-vector (which we often just write as p or x) p0 = Ep.

• Peskin has the following nice interpretation of this equation: “A positive-frequency solution of the
field equation has as its coefficient the operator that destroys a particle in that single-particle wave-
function. A negative-frequency solution of the field equation, being the Hermitian conjugate of a
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positive-frequency solution, has as its coefficient the operator that creates a particle in that positive-
energy single-particle wavefunction. In this way, the fact that relativistic wave equations have both
positive- and negative-frequency solutions is reconciled with the requirement that a sensible quantum
theory contain only positive excitation energies.”

• We can also use the Heisenberg equation of motion, which states that for an operator O, i∂O∂t = [O, H].

This allows us to calculate i∂ϕ(x)∂t as it must equal [ϕ(x), H], with H given by 2.2:

i
∂ϕ(x)

∂t
= [ϕ(x),

1

2

∫
d3x′

(
π2(x′) + (∇ϕ(x′))2 +m2ϕ2(x′)

)
]

=
1

2

∫
d3x

(
π(x′)[ϕ(x), π(x′)] + [ϕ(x), π(x′)]π(x′)

)
= iπ(x)

2.4 2-point correlation function

• With all this formalism we now see if we can solve the problem of causality. That is, does ⟨x,y⟩ vanish
for y outside the light cone. In the above formalism, ⟨x,y⟩ takes the form ⟨0|ϕ(x)ϕ(y) |0⟩. This is our
propagator and will be denoted D(x− y). We can use 2.11 to write this as:

D(x− y) =

∫
d3pd3p′

(2π)6
1

2
√
EpEp′

⟨0|
(
ape

−ip·x + a†pe
ip·x
)(

ap′e−ip
′·y + a†p′e

ip′·y
)
|0⟩

=

∫
d3pd3p′

(2π)6
1

2
√
EpEp′

⟨0| apa†p′ |0⟩ ei(p
′·y−p·x)

=⇒ D(x− y) =

∫
d3p

(2π)3
1

2Ep
e−ip·(x−y) (2.12)

Where in the first line we have used the fact that ⟨0| ap = 0 = a†p |0⟩ and in the last line we have used

a corollary that ⟨0| apa†p′ |0⟩ = ⟨0| [ap, a†p′ ] |0⟩

2.4.1 Time-like separation

• If we consider a time like separation, that is x0 − y0 > |x− y|. Then we can always boost to a frame
where x0 − y0 = t and |x − y| = 0. This is just boosting to the frame of the world-line. The above
expression for D(x− y), in 2.12 becomes:

D(x− y) =
4π

(2π)3

∫ ∞

0
dp

p2

2
√
p2 +m2

e−i
√
p2+m2t

If we look at this integral in the limit as t→ ∞, then we can see that this is a stationary phase problem,
i.e. the exponential oscillates fast around around the unit circle averaging to 0, and only becoming non-
zero where the function

√
p2 +m2 is stationary. This occurs when d

dp

√
p2 +m2 = 0 =⇒ p√

p2+m2
=

0 =⇒ p = 0. So we can Taylor expand the terms in this integral around p = 0. Using the fact that√
p2 +m2 ≃ m+ p2

2m and p2√
p2+m2

≃ p2

m (1− p2

2m) ≃ p2

m . We can write this integral as:

D(x− y) ≃ 4π

2(2π)3

∫ ∞

0
dp
p2

m
e−i(m+ p2

2m
)t

=
4π

2(2π)3

(∫ ∞

0
dp
p2

m
e−i

p2

2m
t

)
e−imt ∼ e−imt
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The integral in brackets is just a Generalized Fresnel integral, the main behavior as t→ ∞ is given by
e−imt.

2.4.2 Space-like separation

• If we consider a space like separation, that is x0 − y0 < |x− y|. Then we can always boost to a frame
where x0 − y0 = 0 and x− y = r. Then we can write 2.12 as:

D(x− y) =
1

(2π)3

∫
d3p

1

2
√
p2 +m2

e−ip·r

=
2π

(2π)3

∫ ∞

0
dp

p2

2
√
p2 +m2

eipr − e−ipr

ipr

= − i

2(2π)2r

∫ ∞

−∞
dp

p√
p2 +m2

eipr

Where in the first step we choose our angular integration variable θ to be the angle between p and
r. The last step is then a result of taking the second term and changing p → −p. This integral is
non-trivial and the manner in which Peskin explains it is not quite correct. For a discussion of this
and a solution of the behavior as r → ∞ see the answer to this stack-exchange post.

Anyway the behavior as r → ∞ is D(x − y) ∼ e−mr, i.e. we still have the problem of non-zero
propagation outside the light-cone.

2.5 Measurement

• Perhaps we have been thinking too classically about the situation. If we think about quantum mechan-
ics, what matters is measurement. We should be asking if I perform a measurement, can it possibly
affect another measurement that occurs outside my light-cone and visa versa. This means we should
instead be calculating the commutator of ϕ(x) and ϕ(y). i.e. does it matter the order in which we
perform on the field at two points that are outside the light cones of each other. It is easy to see that
by definition ⟨0| [ϕ(x), ϕ(y)] |0⟩ = D(x− y)−D(y − x). So we can easily write this down as:

⟨0| [ϕ(x), ϕ(y)] |0⟩ =
∫

d3p

(2π)3
1

2Ep

(
e−ip(x−y) − eip(x−y)

)
(2.13)

• There is a nice argument for why this vanishes for points that are space-like separated. If we pick two
events x and y, that have space like separation, so (x− y)2 < 0. Then there exits a continuous Lorentz
transform from (x − y) to (y − x). It is continuous as it at no point has to cross over the light-cone
boundaries. (Easiest to picture this with SO(1,2)). Then since D(x−y) and D(x−y) must be Lorentz
invariant, we must have that D(x − y) = D(y − x), so the commutator is 0 for points that are space
like separated! Causality is maintained!

• David Tong has a nice comment on this: “There are words you can drape around this calculation.
When (x − y)2 < 0, there is no Lorentz invariant way to order events. If a particle can travel in a
spacelike direction from x → y, it can just as easily travel from y → x. In any measurement, the
amplitudes for these two events cancel.”

What he means by this statement that due to spacelike separation there is no agreed upon temporal
ordering as these two points are not causally connected. Thus the amplitudes for the propagation from
x→ y is the same magnitude as the propagation y → x, but they cancel due to the commutator.
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• Another interpretation is that the propagator creates annihilates a particle at x and creates another
particle at y. This of course must then obey the laws of special relativity, that being that this propa-
gation cannot happen over space-like intervals.

2.6 Klein-Gordon Propagator

• We can actually find a better expression for the propagator D(x−y) given by 2.12. Let us first consider
manipulating the following integral:∫

d3p

(2π)3

∫
dp0

2πi

−1

p2 −m2
e−ip·(x−y) =

∫
d3p

(2π)3
eip·(x−y)

∫ ∞

−∞

dp0

2πi

−1

(p0)2 − p2 −m2
e−ip

0·(x0−y0) (2.14)

This second integral on the RHS is an integral along the real line and has two poles at p0 = ±Ep,
where E2

p = p2 +m2. We can see they are simple poles by expanding with partial fractions i.e.:

1

(p0)2 − E2
p

= − 1

2Ep

[
1

p0 + Ep
− 1

p0 − Ep

]

• To solve this integral we have to shift the poles by a small amount ϵ below the real line so that we
can apply the Residue theorem. We will then take the limit as ϵ → 0 to obtain the true result. Our
contour for this integral will be a semi-circle that goes along the real line and then loops background
either in the upper half plane C1 or the lower half plane C2. We will show then that the integral on
the circular part does not contribute as we send the radius of the semi-circle R→ ∞.

To decide which path to use we have to look at the form of the e−ip
0(x0−y0) part of the integral, since

we are considering the complex plane k0 is complex we can write this term as:

e−ip
0(x0−y0) = e−iRe(p0)(x0−y0)eIm(p0)(x0−y0)

In the complex plane along the curve the imaginary part of p0 gets sent to infinity so in order for this
term to not contribute, we have to use the path C2 when x0 − y0 > 0 and C1 when x0 − y0 < 0. We
can then go ahead and apply the Residue theorem. For now we will assume x0 − y0 > 0, so we use the
path C2. This means the following integral is a closed path around a simple pole, so we can apply the
Residue theorem:

I± = lim
ϵ→0

∮
C2

dp0

2πi
e−ip

0(x0−y0) 1

p0 ± (Ep + iϵ)
= lim

ϵ→0
e±i(Ep+iϵ)(x0−y0) = e±iEp(x0−y0)

This means we can write our integral 2.14 as:∫
d3p

(2π)3

∫
dp0

2πi

−1

p2 −m2
e−ip·(x−y) =

∫
d3p

(2π)3
eip·(x−y) (I+ − I−)

2Ep

=

∫
d3p

(2π)3
1

2Ep

(
e−ip(x−y) − eip(x−y)

)
Which is exactly what we had in 2.13! so we can say our proposition integral 2.14 is the same as
⟨0| [ϕ(x), ϕ(y)] |0⟩. We should note that in the last step we have relabeled the p integral multiplying
the I+ integral, from integrating over p to −p. We also have set p0 to Ep. This allows us to write:

⟨0| [ϕ(x), ϕ(y)] |0⟩ =
∫

d4p

(2π)4
i

p2 −m2
e−ip·(x−y) (2.15)
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2.6.1 Advanced/Retarded Propagators

• The above calculated propagator 2.14 which we showed was the same as D(x − y) is actually one of
many propagators. The one we calculated is actually called the retarded Greens function as we assumed
x0−y0 > 0 so we only considered measurements propagating from the past to the future. If we instead
had x0 − y0 < 0 then we would have had to have chosen the contour C1 in the upper half plane, but
then since our poles were shifted into the lower half plane now our contour does not enclose the poles,
so our integral must be 0. With this we can conclude that the Retarded Greens function can be written
as:

DR(x− y) = θ(x0 − y0) ⟨0| [ϕ(x), ϕ(y)] |0⟩ (2.16)

Where θ is Heaviside’s step function. We could have also shifted the poles in the upper half plane
and then required that x0 − y0 < 0 for the integral to be non-zero, thus we can similarly define the
Advanced Greens function, as:

DA(x− y) = −θ(y0 − x0) ⟨0| [ϕ(x), ϕ(y)] |0⟩ (2.17)

This function is usually not used though as it corresponds to measurements propagating from future
to past.

2.6.2 Feynman Propagator

• There is one last propagator that we can construct by a combination of the others. What we can do
is shift one pole down and the other up. This way both of the paths C1 and C2 only enclose a single
pole. We usually choose the convention of shifting the −Ep pole down and the other up. This means
that we have to use the C2 contour when x0 − y0 > 0 and the C1 contour when x0 − y0 < 0. This
means the Feynman Propagator is:

DF (x− y) =

{
D(x− y), x0 > y0

D(y − x), x0 < y0

= θ(x0 − y0) ⟨0|ϕ(x)ϕ(y) |0⟩+ θ(y0 − x0) ⟨0|ϕ(y)ϕ(x) |0⟩
= ⟨0|T{ϕ(x)ϕ(y)} |0⟩

(2.18)

Where in the last step we have defined the Time ordering symbol T . We can write this in a nice way
similar to 2.15 as:

DF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iϵ
e−ip·(x−y) (2.19)
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3 Representations of the Poincaré Group

• We are quite familiar with the Lorentz group SO(3, 1), that generates rotations and boosts. In general
we can find Lorentz invariant quantities by finding anything that is a scalar, i.e. all its indices contract
such that it can’t change under transformations. This is an excellent method for finding invariants, but
it does not capture everything. For all Isometries (distance preserving maps) we need to extend the
Lorentz group to the Poincaré group. This is nothing more then the semi-Direct product of Rotations
and translations in R1,3. This is usually written as P = R1,3 ⋊O(1, 3).

A general transformation of the Poincaré group takes the form xµ → Λµνxν + aµ. So the elements of
the group take the form: 

Λ0
0 Λ0

1 Λ0
2 Λ0

3 a0

Λ1
0 Λ1

1 Λ1
2 Λ1

3 a1

Λ2
0 Λ2

1 Λ2
2 Λ2

3 a2

Λ3
0 Λ3

1 Λ3
2 Λ3

3 a3

0 0 0 0 1


3.1 Group actions

• We would like to be able to classify how fields, as well as other quantities transform under Lorentz
Transformations. To aid with this we can use the fact that each of the transformation matrices Λµν is
an element of the Lorentz group SO(1, 3). Then if we take the perspective of active transformations
we can think of the action of a Lorentz transformation as not affecting a single particle, but as acting
on the manifold of spacetime itself. This is then a group action.

• This Group G acting on the manifold must then be a Lie group and must act on the elements of the
manifold M such that:

– There is, associated with each of the elements g ∈ G a diffeomorphism from M to itself, x 7→
Tg(x), x ∈M . Such that TgTh = Tgh ∀ g, h ∈ G

– Tg depends smoothly on the arguments x and g.

This first condition is actually quite constringent as we will see later.

3.1.1 Left actions

• For elements of a manifold x ∈M , we can define the following Left action of a group G as:

x→ x′ = g · x
=⇒ x′′ = h · g · x = (h · g) · x

As can be seen in the last line, this action satisfies ThTg = Thg.

3.1.2 Right actions

• Similarly we can define the Right action as:

x→ x′ = x · g−1

=⇒ x′′ = x · g−1 · h−1 = x · (h · g)−1

As can be seen in the last line, this action satisfies ThTg = Thg. Note this could not work if we didn’t
change to the action by inverses.
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3.2 Transformation of fields

• Equipped with the above tools, we can now go about considering how the fields transform under active
transformations. If we have a field ϕ(x) for x ∈ M our manifold of spacetime. Then under active
transformation these co-ordinates x transform via x → x′ = Λx. For now if we denote this matrix Λ
by g as it is an element of a group, then we can consider the transformation of the field ϕ as:

ϕ(x) → ϕ′(x) = ϕ(g · x)
=⇒ ϕ′′(x) = ϕ′(h · x) = ϕ(g · (h · x))

But this does not respect the order we needed from a Lie group, namely here we have ThTg = Tgh. To
fix this we can take inspiration from the definition of the Right action above and say that if we replace
g with g−1 then we have that ϕ′′(x) = ϕ′(h−1 ·x) = ϕ(g−1 · (h−1 ·x)) = ϕ((h · g)−1 ·x) as needed. Thus
we can say that the fields must transform via:

ϕ(x) → ϕ′(x) = ϕ(Λ−1 · x) (3.1)

3.3 Lorentz Group

• Let us remind ourselves what we know about the Lorentz group. It can be described as the space of
operations that leave the quantity xµx

µ unchanged. That is if xµ → x′µ = Λµνxν , and the raising and
lowering of indices is governed by the Minkowski metric such that xµµ = xµηµνx

ν , then we can write
that:

xµηµνx
ν = xµx

µ = x′µx
′µ = x′µηµνx

′ν

= Λµαx
αηµνΛ

ν
βx

β

=⇒ ηαβ = ΛµαηµνΛ
ν
β (3.2)

Where in the last step we have relabeled some indices to get an equality. This last statement is often
used as the defining definition of the Lorentz group.

• We should also note that swapping which order we have the indices, transposes our matrix as that is
the definition of transposing. So if we want to write The above equation 3.2 in index free form, we
have to swap the indies on the first Lambda resulting in η = ΛT ηΛ. We can then take the determinant
of both sides to see that det(ΛTΛ) = 1 =⇒ det(Λ) = ±1 as det(ΛT ) = det(Λ). A Lorentz transform
is called proper if det(Λ) = 1 and improper if det(Λ) = −1.

• If we look at just the η00 = 1 term we know η00 = Λ0
αη

αβΛ0
β = (Λ0

0)
2 − (Λ0

i)
2 = 1. So we then

have two cases, Λ0
0 ≥ 1 which is called orthochronous or Λ0

0 ≤ −1 which is called non-orthochronous.
The Lorentz Group contains Rotations, Boosts, time reversals/space reversals and space-time rever-
sals. All of which fall into one of the 4 categories of being orthochronous/non-orthochronous and
proper/improper.

3.3.1 Generators

• We can find the generators of these transformations by considering an infinitesimal transformation,
Λµν = δµν + εµν . For this to then satisfy 3.2 we then have that:

ηαβ = (δµα + εµα)ηµν(δ
ν
β + ενβ)

= ηαβ + εαβ + εβα +O(ε2)

=⇒ εαβ = −εβα
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So the generators must be anti-symmetric.

• If we then have some transformation that is parametrized by some small parameter λ then we can find
out what the generator for that transformation is via:

Mµν =
d

dλ
Λ(λ;µ, ν)

∣∣∣∣∣
λ=0

Where by saying Λ is a function of µ and ν we mean that Λ has a different matrix structure for each
of the different types of transformations. i.e. one for each possible rotation direction (which requires
two indices µ and ν describing the plane on which the rotation is happening). Recall also that boosts
are just rotations with one of the indices being time. This means that each Mµν is an anti-symmetric
4× 4 matrix. We can write these explicitly as:

(Mρσ)µν = ηρµησν − ησµηρν (3.3)

• To recover the full transformation generated by these generators we have an infinite number of infinitely
small steps so:

Λ = lim
N→∞

(
I+

1

2N
ωµνM

µν

)N
= e

1
2
ωµνMµν

Where here ωµν is an anti-symmetric tensor containing the finite shift corresponding to each transfor-
mation as we define the generators Mµν to be anti-symmetric. We also have a factor of 1/2 as there
are two terms when you sum ωµνM

µν .

It can then be shown that these generators follow the following commutation relations:

[Mµν ,Mρσ] = ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ (3.4)

This can be shown from the matrices that one gets from 3.3. We can recognize that the boost generators
are just the Ki = M0i, i = 1, 2, 3 and the rotation generators are Li =

1
2ϵijkMjk i, j = 1, 2, 3. Where

the rotation generator, Li generates a rotation in the j− k plane. It can then be shown that the above
commutators 3.4 lead to the regular commutators we are used to. Namely:

[Li, Lj ] = ϵijkLk

[Ki,Kj ] = −ϵijkLk (3.5)

[Li,Kj ] = ϵijkKk

• For our purposes of QFT we can obtain the form of these generators by recognizing that the rotations
will be the standard angular momentum L = x× p = x× (i∇) =⇒ Jµν = i(xµ∂ν − xν∂µ). To fit in
with these operators being hermitian we must add and i to the RHS of 3.4 as here Jµν is the same as
the Mµν we had before. This then means that the commutators take the form:

[Jµν , Jρσ] = i (ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ) (3.6)

This can also just be checked from the definition of Jµν as Jµν = i(xµ∂ν − xν∂µ).
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3.3.2 sl(2,C) representation

• We can define the following operators:

Ni =
1

2
(Li + iKi)

N †
i =

1

2
(Li − iKi)

With these definitions, it can be shown using the above commutation relations 3.5, that:

[Ni, Nj ] = iϵijkNk

[N †
i , N

†
j ] = iϵijkN

†
k

[NI , N
†
J ] = 0

We can see that these have the structure of two sets separate angular momentum generators. They
also have the same structure as the sigma generators of sl(2,C). In the same manner we deal with

regular angular momentum we can pick N3 and N †
3 as the z direction which will then have eigenvalues

−n, . . . , 0, . . . , n, where n is the “spin”. Similarly N † has eigenvalues −m, . . . , 0, . . . ,m. That means
the total number of possible states of this system is (2m + 1)(2n + 1). Here m,n = 0, 12 , 1, . . .. This
result means that all finite representations of the Lorentz group correspond to pairs of integers or half
integers corresponding to pairs of representations of the rotation group.

• As it turns out the m,n = 0 corresponds to the Klein-Gordon theory for a spin 0 scalar particle we
developed earlier. The two cases m = 1

2 , n = 0 and m = 0, n = 1
2 correspond to spin half particles

which we will see more off later.

3.4 Generators of the Poincaré group

• The Poincaré group has the same generators as the Jµν above 3.6, for the SO(3, 1) part, as well as the
translation generators Pµ = −i ∂

∂xµ . It can be shown then that they have the following commutation
relations:

[Jµν , Jρσ] = i(ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ)

[Jµν , Pσ] = i(ηνσPµ − ηµσPν)

[Pµ, Pν ] = 0

(3.7)

If we have any sort of generators that act on certain objects to generate transformations of the Poincaré
group the only condition on them is that they must obey these commutation relations which are known
as the Commutation relations of the Poincarè Algebra.

3.4.1 Casimir Invariants

• What we would then like to do is find out what are the Casimir’s of these commutators, i.e. operators
that commute with everything. Recall that the Casimir operator in quantum mechanics was L2. It
can be shown that the following quantities commute with both Jµν and Pµ:

PµP
µ = m2

WµWµ =W 2
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Here Wµ = 1
2ϵ
µνρσPνJρσ is the Pauli-Lubańsky vector.
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4 The Dirac Field

• We have so far only discussed scalar fields that transform via 3.1 and seen that quantization of these
fields leads to spin-0 particles that obey the Klein Gordon equation. To find out what describes particles
with non-zero spin it is natural to think that we will need some fields that are vector fields of some
kind. This means we need to find alternate representation of the Lorentz/Poincaré algebra. Remember
that the only condition on the generators of these algebras is that they must satisfy the commutation
relations 3.6. We have already found some matrices 3.3 that do this. But what if there is another
representation.

4.1 Spinor Representation

• We can find another of these representations due to a trick from Dirac. This turn out to be nothing
other then the Clifford algebra. Suppose we have a set of n× n matrices γµ satisfying:

{γµ, γν} = 2ηµνIn (4.1)

This is also known as a Dirac algebra. Then using this, it turns out that if we define:

Sµν =
i

4
[γµ, γν ] (4.2)

Then Sµν satisfy the commutation relations 3.6. This is easier to show if we break this down into
showing [Sµν , γρ] = i(γµηνρ − γνηρµ) and [γµ, γν ] = 2γµγν − 2ηµν =⇒ Sµν = i

2(γ
µγν − ηµν).

• These Sµν are know as the Spinor rotation matrices or sometimes just the spin matrices. As the
name suggests it will turn out that they act on spinors which are two component vectors with complex
number entries ψ = (z1, z2). This means that our fields will not be scalars and wont just transform via
3.1. Instead they will transform according to the exponential of our generators Sµν . This means the
transformation takes the form (for α = 1, 2, 3, 4):

ψα(x) = (Λ 1
2
)αβψ

β(Λ−1x) (4.3)

Notice that the regular co-ords x have just transformed in their usual way as they did in 3.1. This
means that:

Λ = exp(
1

2
iωµνJ

µν)

Λ 1
2
= exp(

i

2
ΩµνS

µν) (4.4)

Where we need the i’s in the exponential as the generators are defined as complex and we need the
exponential to be real.

4.1.1 Why the Klein Gordon field has spin-0

• In the case of the Klein-Gordon field we had scalar fields must transform via 3.1. This means it has
no prefactor as the spinors do in 4.3. This essentially means Sµν = 0 for scalar spins. We will see later
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that this Sµν matrix corresponds to spin. So this means that the Klein-Gordon field describes spin-0
particles.

4.2 Dirac matrices

• The matrices defined by 4.1 are all that is needed to define these matrices. There are no representations
of this Clifford algebra for n = 2 or n = 3, so it turns out that the simplest representation is when the
γµ are 4× 4 matrices. We can then go about figuring out their form. We can see immediately from 4.1
that:

(γ0)2 = I4, (γi)2 = −I4, i = 1, 2, 3 (4.5)

We can also write down some more relations that all follow from 4.1:

{γµ, γν} = [γµ, γν ] + γνγµ (4.6a)

[γµ, γν ] = 2ηµν − 2γνγµ (4.6b)

γµγν = 2ηµν − γνγµ (4.6c)

γµγν =

{
(γµ)2 (µ = ν)

−γνγµ (µ ̸= ν)
(4.6d)

We can then see that these matrices are traceless through the following argument. Consider via 4.1
that we can write I = γµγµ/ηµµ for some fixed value of µ. Then we can insert this into the trace of
γν , where we are free to choose ν ̸= µ (This means γνγµ = −γµγν as per 4.6d):

tr(γν) =
1

ηµµ
tr(γνγµγµ) = − 1

ηµµ
tr(γµγνγµ) = − 1

ηµµ
tr(γνγµγµ) = −tr(γν) = 0

Where in the second last step we used the cyclic property of the trace and the lest step was removing
the identity inserted earlier. This means all the gamma matrices are traceless.

• These conditions are not enough to completely determine the gamma matrices so there are many
different forms. We will use one of the simplest ones, that being:

γ0 =

(
0 I
I 0

)
γi =

(
0 σi

−σi 0

)
(4.7)

This is known as the chiral representation.

• Note that the σi are the familiar Pauli matrices, which satisfy this nice condition:

σiσj = δij + iϵijkσk (4.8)

4.3 Exponential map

• The next step is naturally to use the above gamma matrices to see what the spinor transformation 4.4
looks like. To do this we can notice the following simplifications. Using the definitions of Sµν above
8.4 we can immediately see that S00 = 0 = Sii as Sµν is defined as a commutator.

We can split up the calculation into two sections we are familiar with. Boosts generated by S0i = −Si0
and Rotations generated by Sij . We do these separately here as the Baker-Campbell-Hausdorff formula
means we cannot purely separate the exponential into the product of boosts and rotations.
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4.3.1 Boosts

• We start with Boosts, for which we can calculate from 8.4 that:

S0i = − i

2

(
−σi 0
0 σi

)
(4.9)

We can then go about exponentiating this using 4.4 where the boost parameters are determined by
Ω0i = −Ωi0 ≡ αi. This means α is the vector that determines the boost direction. Notice that due to
the anti symmetry of both S0i and Ω0i we end up with two of each pair. This all means:

Λ 1
2
= exp

[
−1

2

(
−α · σ 0

0 α · σ

)]
=

(
e−

1
2
α·σ 0

0 e
1
2
α·σ

)
(4.10)

4.3.2 Rotations

• We can then do the exact same procedure with Rotations. From 8.4 we have:

Sij = −1

2
ϵijk

(
σk 0
0 σk

)
We then exponentiate this, defining the rotations to be parametrized by Ωjk ≡ −ϵijkφk, then using the
fact that ϵijlϵijk = 2δlk we can write this as:

Λ 1
2
= exp

[
i

2

(
φ · σ 0
0 φ · σ

)]
=

(
e

i
2
φ·σ 0

0 e
i
2
φ·σ

)
(4.11)

• It should be noted that behind this last step in the above equation and the corresponding one for
boosts, there are a few steps. We are not just naively raising the inside terms to the power of e. This is
properly done by constructing an exponential map from the Taylor expansion in powers of the matrix.
Usually noting a pattern in the powers that leads to a clean form. In the above two cases both of the
A in Λ 1

2
= eA cube to some constant times the identity I4.

4.3.3 Non-Unitary representation

• It should be noted that it is not possible for this Dirac representation to be unitary, as the generators
8.4 cannot be made anti-hermitian. This comes from the fact that if we want Sµν to be anti-hermitian
then we need all of γµ to be either Hermitian or anti-hermitian. We can see from 4.5 that γ0 has real
eigenvalues and γi have imaginary eigenvalues. This means γ0 will be hermitian where as γi must be
anti-hermitian. This means Sµν can never be hermitian making this a Non-Unitary representation.

4.4 Lorentz Invariants

• We would now naturally like to find out what are the invariants we can make out of the spinors ψ which
transform according to 4.3. Let us first try what usually works, that being the standard combination
ψ†ψ. Do do this we recall that as per 3.1, the spinors transform via:

ψ(x) → Λ 1
2
ψ(Λ−1x)

ψ(x)† →
(
Λ 1

2
ψ(Λ−1x)

)†
= ψ†(Λ−1x)Λ†

1
2
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So the combination ψ†ψ transforms as:

ψ(x)†ψ →= ψ†(Λ−1x)Λ†
1
2

Λ 1
2
ψ(Λ−1x)

But we now have a problem, as we in the above section have just explained why Λ 1
2
cannot be unitary,

so we can never have ψ†ψ = ψ′†ψ′.

4.4.1 Scalars

• To see how to proceed, we can see that we need someway of constructing Λ−1
1
2

= exp(− i
2ΩµνS

µν). But

this is not easy since (Sµν)† ̸= −Sµν . To do this we notice that using the chiral representation 4.1:
(γi)† = −γi and (γ0)† = γ0. Which means the following property holds for µ = 0, 1, 2, 3:

γ0γµγ0 = (γµ)†

This clearly works for µ = 0 as (γ0)2 = I. For µ = i we make use of 4.6d when we swap the first two
terms.

This expression then allows us to find an expression for (Sµν)†:

(Sµν)† = − i

4
(−[(γµ)†, (γν)†]) =

i

4

(
γ0γµγ0γ0γνγ0 − γ0γνγ0γ0γµγ0

)
=
i

4

(
γ0[γµ, γν ]γ0

)
= −γ0Sµνγ0

This is key as the minus allows us to finally relate Λ−1
1
2

and Λ†
1
2

:

Λ†
1
2

= exp(− i

2
Ωµν(S

µν)†) = γ0 exp(− i

2
ΩµνS

µν)γ0 = γ0Λ−1
1
2

γ0 (4.12)

• Using this 4.12, we can then define the Dirac adjoint :

ψ̄ ≡ ψ†γ0 (4.13)

We can then see that the quantity ψ̄ψ is indeed conserved, as ψ̄ transforms by ψ̄ → ψ̄Λ−1
1
2

.

4.4.2 Vectors

• We have seen how we can construct a quantity that transforms like a scalar, now lets see if we can
construct objects that transform like traditional vectors. Note that even though ψ has 4 indices, it
does not transform like a vector as the Λ 1

2
is not the same as the Λµν that we have for 4-vectors. If we

want something to transform like a vector we somehow need it to “create” Λµν . Naturally this leads us
to the γµ, and keeping in line with what we know about indices we can gather that it probably should
only involve a single γµ.

To relate these two different transformation matrices we can use the following relation: [Sµν , γρ] =
i(γµηνρ − γνηρµ) (Which is easy to show by expanding and using 4.6b). The RHS of this relation can
then be recognized as the same thing we had for the regular Lorentz generators from 3.3 (with the
lowering of a single index by acting with ηνν′ and relabeling so that (Mρσ)µν = ηρµδσν − ησµδρν). We
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also have an extra factor of i in our new expression but this is just so we now have hermitian operators.
This means we can say:

[γρ, Sµν ] = −[Sµν , γρ] = i(δνση
µρ − ηνρδµσ)γ

σ = (Mµν)ρσγ
σ

If we then multiply this by i
2 , contract with ωµν and add γρ then this becomes:

γρ +
i

2
γρωµνS

µν − i

2
ωµνS

µνγρ = δρσγ
σ +

i

2
ωµνM

µν

=⇒ (1− i

2
ωµνS

µν)γρ(1 +
i

2
ωµνS

µν) ≃ (1 +
i

2
ωµνM

µν)ρσγ
σ

=⇒ Λ−1
1
2

γρΛ 1
2
= Λρσγ

σ (4.14)

• Now this is a very useful relation as from this we can very easily see what we need to do to construct
a Lorentz scalar. We need something that transforms via Λ−1

1
2

and something that transforms via Λ 1
2
.

But we know these objects! This means the quantity ψ̄γµψ transforms like a Lorentz vector!

This same procedure can be used to see that quantities such as ψ̄γµγνψ transform as a rank-2 tensor
and so on.

4.5 Dirac Action

• We would then like to of course construct an action for our new theory of spinors, that will then of
course lead to the Holy grail; an equation of motion. To construct an action we usually just combine
every conserved quantity we can into one equation and then interpret that as the action. So what
scalars do we have? Well we know ψ̄ψ is a scalar. If we are thinking about a single particle then
the mass of the particle m is also a scalar. That is kinda it for scalars, but we also know that the
contraction of two vectors is a scalar, and we know another vector quantity, that being ψ̄γµψ. But
then the question is what to contract this with, does a single particle have a vector like quantity? well
yes its 4-momentum is a vector, so we can contract ψ̄γµψ with pµ = i∂µ. We could continue further
adding tensors, but we don’t really have any tensor like properties of our particle to contract them
with. Taking all these the most natural way to combine them into one Lagrangian is the following:

S =

∫
d4xψ̄(iγµ∂µ −m)ψ (4.15)

We have to attach m to some spinors as other wise it does not appear in the equation of motion. The
minus in front is just the one that turns out to make the parameter m the same as the mass.

• We can now vary this action. We can treat ψ and ψ̄ as independent fields as we would do for a complex
Klein Gordon scalar field theory. Varying with respect to ψ̄ gives us the Dirac equation, noticing that
there is no ∂µψ̄ term in the Lagrangian:

(iγµ∂µ −m)ψ = 0 (4.16)

Varying with respect to ψ is actually a little different, since there is a ∂µψ in the Lagrangian. This
just means we use 1.3 to get ∂µ

δL
δ∂µψ

− δL
δψ = ∂µ(iψ̄γ

µ) +mψ̄ = 0. This can then be recognized as just

the Dirac equation, if we act by γ0 and take the hermitian conjugate.
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• Anthony Zee, raises the following point about this Lagrangian in his book ”Quantum field theory in
a nutshell”: “If you are disturbed by the asymmetric treatment of ψ̄ and ψ, you can always integrate
by parts in the action, have ∂µ act on ψ̄ in the Lagrangian and then average the two forms of the
Lagrangian.” So despite first looks this action does treat ψ and ψ̄ equally.

• This is not the derivation that Dirac came up for his equation. His approach is more direct and was
more about finding what the form of a first order Lorentz invariant equation would be. For a nice
explanation of this see pg 77 of Michu Kaku’s “Quantum field theory”.

4.5.1 Return to Klein-Gordon

• It can then be checked that the Dirac equation, when acted from the left by (−iγµ∂µ −m) gives back
the Klein-Gordan equation we had above 2.3:

(−iγµ∂µ −m)(iγµ∂µ −m)ψ =(γµγν∂µ∂ν +m2)ψ = (
1

2
{γµ, γν}∂µ∂ν +m2)ψ = 0

=⇒ (∂µ∂
µ +m2)ψ = 0

Where here we have used the fact that γµγν∂µ∂ν = ({γµ, γν} − γνγµ)∂µ∂ν =⇒ 2γµγν∂µ∂ν =
{γµ, γν}∂µ∂ν As we can relabel µ↔ ν in the second term.

4.6 Weyl Spinors

• From the block diagonal form of the Boost 4.10 and rotation 4.11 matrices we can see that the Dirac
representation of the Lorentz group is reducible, i.e. we can split up our spinors into two components
which are acted upon separately by Λ 1

2
. These are 2-component spinors called Weyl spinors or chiral

spinors. We denote these:

ψ =

(
ψL
ψR

)
(4.17)

As was mentioned in the section on Representations of the Poincaré group these correspond to m =
1/2, n = 0 and m = 0, n = 1/2. We can now use the chiral representation to write down the Dirac
equation for the Weyl spinors. For this we can introduce some notation to make this cleaner. Defining
σµ ≡ (I,σ) and σ̄µ ≡ (I,−σ). Then this becomes:(

−m iσµ∂µ
σ̄µ∂µ m

)(
ψL
ψR

)
= 0

This leads to two coupled equations, but if we have m = 0, then they become de-coupled. These are
known as the Weyl equations:

iσ̄µ∂µψL = 0

iσµ∂µψR = 0

(4.18)

(4.19)

• It should also be noted that with this notation we can write in the chiral representation:

γµ =

(
0 σµ

σ̄µ 0

)
(4.20)
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4.7 Solutions to the Dirac equation

• Since the Dirac field ψ obeys the Klein Gordon equation we know it must be a superposition of plane
wave solutions, i.e. ∝ e−ip·x. We can then make the following ansatz for the Dirac spinor:

ψ = u(p)e−ip·x (4.21)

Here u(p) is a 4 component spinor that does not depend on spacial components, which fits in with
the picture of there being a spinor space at every point in space independent from each other. It not
depending on the spacial components also means that when we plug this ansatz into the Dirac equation
we just get:

(γµpµ −m)u(p) = 0 (4.22)

To solve this we can let u(p)T = (u1, u2). Then this equation becomes:

σµpµu2 = mu1, σ̄µpµu1 = mu2

=⇒ σµpµσ̄
νpνu1 = m2u1

This actually means these equations are not independent as they imply each other (through the relation
(σµpµ)(σ̄

νpν) = p20 − pipjσ
iσj = p20 − pipjδ

ij = m2). 1This means the components must be linear
dependent, i.e. the same up to a factor. This means we can make the ansatz u1 = (σµpµ)ξ, then
u2 = mξ. But we can scale both u1 and u2 by any factor we want, so we choose the most symmetric
one by multiplying by 1/

√
pµσµ leaving us with the neat solution:

u(p) =

(√
p · σξ√
p · σ̄ξ

)
(4.23)

4.7.1 Negative frequencies

• We could have course also had solutions of the form:

ψ = v(p)eip·x (4.24)

However, if we compute the energy of these solutions, we find that it is negative (Think of Schrödinger
equation i∂t |ψ⟩ = E |ψ⟩). Never the less we will need these solutions later. We can then repeat the
same above procedure plugging this ansatz into the Dirac equation to get:

(−γµpµ −m)v(p) = 0 (4.25)

This is solved by:

v(p) =

( √
p · ση

−
√
p · σ̄η

)
(4.26)

For some 2-component spinor η.

1This is totally wrong and needs to be fixed at some point...
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4.7.2 Helicity operator

• The helicity operator is the projection of the angular momentum along the direction of momentum:

h = −1

2
ϵijkS

jkp̂i =
1

2
p̂i
(
σi 0
0 σi

)
Here Sij is the generator of rotations we had above in 4.9. So we have used ϵijlϵijk = 2δlk to get the
matrix in this form. A particle with eigenvalue h = 1/2 is called right handed, where as a particle with
h = −1/2 is called left handed. The Helicity of a massive particle will depend on its frame of reference
as we can always boost to a frame where its momentum is in the opposite direction. This does not
however, work for a massless particle so their helicity is always the same.

4.8 Normalization of spinors

• It is often useful to work with a basis of specific spinors ξ for example we can use eigenstates of σ3,

That is ξ1 =

(
1
0

)
and ξ2 =

(
0
1

)
. These are relevant as if we often care about spin along the z axis.

With this notation we place an index s on our 2-component spinors, ξ → ξs, s = 1, 2. This means we
also place this label on u(p) as both the spinors must be the same. So u(p) → us(p).

• We would then like to define some sort of orthogonality relation with respect to an inner product.
Immediately we would think of u†u, but remember we would like Lorentz invariant quantities so that
they remain the same in all frames, and we have seen before that this is not Lorentz invariant for spinors
as Λ 1

2
is not unitary. Thus we use the Dirac adjoint, ūs(p) ≡ u†(p)γ0. This allows us to calculate the

inner product:

ūrus = ((ξr)†
√
p · σ̄, (ξr)†√p · σ) ·

(√
p · σξs√
p · σ̄ξs

)
= 2m(ξr)†ξs = 2mδrs (4.27)

Where we have used the fact that (σµpµ)(σ̄
νpν) = m2. Notice that γ0 had the affect of swapping the

two components of u†. This quantity is clearly Lorentz invariant.

• For the negative frequency solutions we can see that the condition will be:

v̄rvs = (−(ηr)†
√
p · σ̄, (ηr)†√p · σ) ·

( √
p · σηs

−
√
p · σ̄ηs

)
= −2m(ηr)†ηs = −2mδrs (4.28)

• We can also check the inner products of the us(p)’s and vr(p)’s:

ūrvs = ((ξr)†
√
p · σ̄, (ξr)†√p · σ) ·

( √
p · σηs

−
√
p · σ̄ηs

)
= (m−m)(ξr)†ηs = 0

So ur(p) and vs(p) are orthogonal. This clearly also works for v̄rus.

• It also turns out that relations to do with the regular adjoint scalar product of these spinors are
important when we go to quantize this theory. These can be shown to be:

ur†(p)us(p) = vr†(p)vs(p) = 2p0δ
rs

ur†(p0,p)v
s(p0,−p) = vr†(p0,p)u

s(p0,−p) = 0

(4.29)

(4.30)
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4.8.1 Outer product

• We can define an outer product on these spinors in the following way:

2∑
s=1

us(p)ūs(p) =

(√
p · σξs√
p · σ̄ξs

)
· ((ξr)†

√
p · σ̄, (ξr)†√p · σ) =

(
m p · σ
p · σ̄ m

)
= γµpµ +m (4.31)

Where we have used the relation
∑2

s=1 ξ
s(ξs)† = I. Similarly for vs(p) we have:

2∑
s=1

vs(p)v̄s(p) = γµpµ −m (4.32)

4.9 Quantization of the Dirac Field

• We now want to quantize this theory. We start with the Lagrangian L = ψ̄(iγµ∂µ−m)ψ, which we get
from the Dirac action 4.15. The most logical way to start is by treating ψ as we did the scalar Klein
Gordon field.

We can see that the momentum density of ψ is π = ∂L
∂ψ̇

= iψ̄γ0 = iψ†. This means we can calculate

the Hamiltonian via 1.5:

H =

∫
d3x

[
iψ†∂0ψ − ψ̄(iγµ∂µ −m)ψ

]
=

∫
d3x

[
iψ̄γ0∂0ψ − ψ̄(iγµ∂µ −m)ψ

]
=

∫
d3x

[
ψ̄(−iγ0γ · ∇+mγ0)ψ

]
=

∫
d3x

[
ψ̄(−iα · ∇+mβ)ψ

]
(4.33)

Where we have defined α = γ0γ and β = γ0. We often denote hD ≡ −iα · ∇+mβ

4.9.1 Commutation relations

• We then proceed as usual, positing the canonical commutation relations:

[ψa(x), ψ
†
b(x

′)] = δabδ(x− x′)

Here a and b denote the spinor components, that is a, b = 1, 2, 3, 4. Note that in the rest of the
computations we (and most sources Peskin, Tong ect) drop these indices (and essentially assume
a = b), though it should be noted that they are still there! we are doing out these component wise
for the spinors. This is important as it allows us to exchange the order of spinors as they are just
components. It also should be noted that we shouldn’t confuse the index’s a, b and s, r they are not
the same. The latter indicates the basis index not the spinor index.

• Our task then is to find a representation of our commutation relations in terms of creation and annihi-
lation operators that diagonalize H. From the Dirac equation 4.16 we have that (iγ0∂0 − γ0hD)ψ = 0
So we are looking for solutions to the Dirac equation with eigenvalues Ep. These are just the solutions
we discussed before so we can write:

ψ(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

)
(4.34)

ψ†(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bs†p u

s†(p)e−ip·x + cspv
s†(p)eip·x

)
(4.35)

Notice that for now we are working in the Schrödinger picture where ψ does not depend on time. We
can now attempt to calculate the commutator for each spinor index:
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[ψ(x), ψ†(x′)] =
∑

s,r=1,2

∫
d3pd3p′

(2π)6
1

2
√
EpEp′

[(
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

)(
br†p′u

r†(p′)e−ip
′·x′

+ crp′vr†(p′)eip’·x
′
)

−
(
br†p′u

r†(p′)e−ip
′·x′

+ crp′vr†(p′)eip
′·x′
)(

bspu
s(p)eip·x + cs†p v

s(p)e−ip·x
)]

=
∑

s,r=1,2

∫
d3pd3p′

(2π)6
1

2
√
EpEp′

[
[bsp, b

r†
p′ ]u

s(p)ur†(p′)ei(p·x−p′·x′) + [bsp, c
r
p′ ]us(p)vr†(p′)ei(p·x+p′·x′)

+ [cs†p , b
r†
p′ ]v

s(p)ur†(p′)e−i(p·x+p′·x′) + [cs†p , c
r
p′ ]vs(p)vr†(p′)e−i(p·x−p′·x′)

]
• Notice that we have only been able to pull the spinors out of the commutators as we are doing this
component wise for them, so each us(p) is just a complex number meaning the order does not matter.
We are now in the position to make the claim that this commutator being equal to δ(x−x′) is equivalent
to the operators bsp and crp satisfying:

[bsp, b
r†
p′ ] = (2π)3δsrδ(p− p′)

[csp, c
r†
p′ ] = −(2π)3δsrδ(p− p′)

With all other commutators vanishing (notice this makes the cross terms above vanish). We will see
why we needed this minus sign on the second commutator later. Plugging these in we see:

[ψ(x), ψ†(x′)] =
∑
s=1,2

∫
d3p

(2π)3
1

2Ep

[
us(p)ūs(p)γ0eip·(x−x′) + vs(p)v̄s(p)γ0e−ip·(x−x′)

]
=

∫
d3p

(2π)3
1

2Ep

[
(γµpµ +m)γ0eip·(x−x′) + (γµpµ −m)γ0e−ip·(x−x′)

]
Where in the last step we have used the outer product relations 4.31 and 4.32. The we can do the
classic trick of changing p ↔ −p the second term in this integral to factor out the exponential. This
leaves us with:

[ψ(x), ψ†(x′)] =

∫
d3p

(2π)3
1

2Ep
[γ0p0 + γipi + γ0p0 +m− γipi −m]γ0eip·(x−x′)

=

∫
d3p

(2π)3
eip·(x−x′) = δ(x− x′)

Where we have used p0 = Ep. Thus the commutations relations above were equivalent to this result.

• The next thing to do is to calculate the Hamiltonian by plugging 4.34 and 4.35 into 4.33:

H =
∑

s,r=1,2

∫
d3xd3pd3p′

(2π)62
√
EpEp′

[(
br†p′u

r†(p′)e−ip
′·x + crp′vr†(p′)eip

′·x
)
γ0(−iγ · ∇+m)

(
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

)]
=

∑
s,r=1,2

∫
d3xd3pd3p′

(2π)62
√
EpEp′

[
bs†p b

r
p′us†(p)γ0(γ · p′ +m)ur(p′)eix·(p−p′) + bs†p c

r†
p′u

s†(p)γ0(−γ · p′ +m)vr(p′)eix·(p+p′)

+cspb
r
p′vs†(p)γ0(γ · p′ +m)ur(p′)e−ix·(p+p′) + cspc

r†
p′v

s†(p)γ0(−γ · p′ +m)vr(p′)e−ix·(p−p′)
]

• Now we can recognize a couple of things. First off, via 4.22 and 4.25 we can say that (γµp′µ−m)u(p) =
0 = (γ0p0 − γ · p′ −m)ur(p′) =⇒ (γ · p′ +m)ur(p′) = γ0p0u

r(p′). Similarly (−γ · p′ +m)vr(p′) =
−γ0p0vr(p′).
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The next thing to notice is that we can bring in the x integral in and turn the exponentials into delta
functions.

H =
∑

s,r=1,2

∫
d3p

(2π)32Ep

[
bs†p b

r
pu

s†(p)p0u
r(p)− bs†p c

r†
−pu

s†(p)p0v
r(−p)

+cspb
r
−pv

s†(p)p0u
r(−p)− cspc

r†
p v

s†(p)p0v
r(p)

]
We can now go ahead and use the normalization conditions 4.29 and 4.30:

H =
∑
s=1,2

∫
d3p

(2π)32Ep

[
bs†p b

s
pp0(2p0)− (cs†p c

s
p + (2π)3δ(0))p0(2p0)+

]

=⇒ H =
∑
s=1,2

∫
d3p

(2π)3

[
Epb

s†
p b

s
p − Epc

s†
p c

s
p

]
(4.36)

Where we have recognized p0 = Ep. There is something very strange happening here by creating more

and more particles with the cs†p operators we can lower the energy indefinitely! We also cannot re-label

csp → cs†p as that ruins our commutation relations. We need to do something different.

4.9.2 The need for Anti-Commutation relations

• I don’t like how many sources just introduce the anti-commutations that we will use below. The best
I have found is from Anthony Zee’s “Quantum Field Theory in a nutshell”:

“Long and careful study of atomic spectroscopy revealed that the wave function of two electrons
had to be anti-symmetric upon exchange of their quantum numbers. It follows that we cannot put
two electrons into the same energy level so that they will have the same quantum numbers. In 1928
Jordan and Wigner showed how this requirement of an anti-symmetric wave function can be formalized
by having the creation and annihilation operators for electrons satisfy anti-commutation rather than
commutation relations”

• Peskin’s approach is also good, I will outline it here. If we go back to the drawing board and be more
careful with our assumptions. First lets add the time dependence to 4.34 and 4.35, we can treat this
in the same manner as we did the Klein Gordon field and use the relations 2.10 (which also apply to
bsp and csp), to write:

ψ(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bspu

s(p)e−ip·x + cs†p v
s(p)eip·x

)
(4.37)

ψ†(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bs†p u

s†(p)eip·x + cspv
s†(p)e−ip·x

)
(4.38)

Let us forget the commutators we postulated above for bsp and csp and see if we can re-build these
from stronger arguments. Let us not even start with the commutator of these annihilation operators
let us look at ⟨0| bspb

r†
p′ |0⟩. We can now use arguments about spacial and translational invariance to

get a form of this. Since the ground state is invariant under translations we must have that |0⟩ =
eiP·x |0⟩ and ⟨0| = ⟨0|P · x We can then use the same arguments as we used to get 2.10 to show that

e−iP·xape
iP·x = ape

−ip·x, e−iP·xa†pe
iP·x = a†pe

−ip·x, which allows us to write:

⟨0| bspb
r†
p′ |0⟩ = ⟨0| bspb

r†
p′e

iP·x |0⟩ = eix·(p−p′) ⟨0| eiP·xbspb
r†
p′ |0⟩ = eix·(p−p′) ⟨0| bspb

r†
p′ |0⟩
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So this is only non-vanishing if p = p′. Similarly we can show using the angular momentum generators
that this is only non-vanishing for r = s. This means we can write:

⟨0| bspb
r†
p′ |0⟩ = (2π)3δrsδ(p− p′)A(p)

For some function A(p). This quantity must be non-negative as we can write it as ⟨0bs†p | |br†p′0⟩, which
is the inner product of the same term and thus must be > 0. We can then calculate:

⟨0|ψa(x)ψ†
b(x

′) |0⟩ =
∫

d3p

(2π)3
1

2Ep

∑
s=1,2

usa(p)ū
s
c(p)A(p)e

−ip·(x−x′)(γ0)cb

=

∫
d3p

(2π)3
1

2Ep
(γµpµ +m)acA(p)e

−ip·(x−x′)(γ0)cb

Where we are assuming bsp |0⟩ = 0 and csp |0⟩ = 0 so there are no terms containing negative frequencies.
We can then see that this expression is only properly invariant under boosts iff A = A(p2) = A(m2) =
constant. So:

⟨0|ψa(x)ψ†
b(x

′) |0⟩ = A(iγµ∂µ +m)ac

∫
d3p

(2π)3
1

2Ep
e−ip·(x−x

′)(γ0)cb (4.39)

• Similarly we can do this for the other commutators :

⟨0| cspc
r†
p′ |0⟩ = (2π)3δrsδ(p− p′)B(p)

And:

⟨0|ψ†
a(x)ψb(x) |0⟩ =

∫
d3p

(2π)3
1

2Ep
(γµpµ −m)acB(p)eip·(x−x

′)(γ0)cb

=

∫
d3p

(2π)3
1

2Ep
(γµpµ −m)acB(p)eip·(x−x

′)(γ0)cb

= −B(iγµ∂µ +m)ac

∫
d3p

(2π)3
1

2Ep
eip·(x−x

′)(γ0)cb (4.40)

• We can see that these integrals are the same as in 2.12. This implies when we go to calculate
⟨0| [ψ(x), ψ(x′)] |0⟩ it will never be 0 outside the light-cone as A and B are greater then 0 and then
can never cancel (recall that outside the light-cone D(x − x′) = D(x′ − x)). But this gives us a new
insight. If we set A = B = 1 then we see that outside the light-cone:

⟨0|ψa(x)ψ̄b(x′) |0⟩ = −⟨0| ψ̄b(x)ψa(x′) |0⟩

That is the fields anti-commute for space like intervals. Here we have noticed that everything is cleaner
if we do this with ψ̄ instead of ψ†. Mainly we loose the extra γ0 in the above equations cleaning up
the indices.

I have added back in the spinor indices in the above calculations to remind us how they come into
affect.
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4.9.3 Anti-commutation relations

• We have concluded from the above section that there is no way to have commutation relations that
make sense for the Dirac field, but there is some hope, as we can see that if we define anti-commutation
relations then maybe everything will work out. Let us proceed to do just so. We note that we can
keep the same form of ψ and ψ† that we were using above in 4.37. But now instead of talking about
ψ† we will talk about ψ̄, we do this as it is cleaner, ψ̄ is the dual spinor of ψ meaning they combine to
a scalar. We are able to do this as all our above calculations have been component wise, meaning we
can always switch from ψ̄ to ψ† by acting with (γ0)bc, i.e. the components of the γ0 matrix.

Writing out ψ and ψ̄ we have:

ψ(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bspu

s(p)e−ip·x + cs†p v
s(p)eip·x

)
(4.41)

ψ̄(x) =
∑
s=1,2

∫
d3p

(2π)3
1√
2Ep

(
bs†p ū

s(p)eip·x + cspv̄
s(p)e−ip·x

)
(4.42)

With the anti-commutation relations:

{ψa(x), ψ†
b(y)} = δ(x− y)δab

{ψa(x), ψb(y)} = {ψ†
a(x), ψ

†
b(y)} = 0

Which are equivalent to:

{brp, b
s†
p′} = {crp, cs†q } = (2π)3δ(p− q)δrs (4.43)

With all other commutators being 0.

Note that all though we are now more concerned with ψ̄, ψ† is still the conjugate momentum and
should still be in the commutation relations.

• Proceeding with these commutation relations however will not fix the negative energy problem as we
still end up with a minus sign from 4.25 (See calculation above). We can however fix this, if we relabel

crp → cr†p and cr†p → crp. We are free to do this now as the anti-commutation relations are symmetric

for these operators. This means cr†p c
r
p = −crpc

r†
p + constant.This means the Hamiltonian 4.36 nicely

becomes:

H =
∑
s=1,2

∫
d3p

(2π)3

[
Epb

s†
p b

s
p + Epc

s†
p c

s
p

]
(4.44)

4.10 Pauli exclusion principle

• This above relabeling crp → cr†p is essentially just us calling the operator that creates positive energy as

the creation operator. We are able to do this for a very special reason. Since {cr†p , cs†p } = {crp, csp} = 0

we must have that (cr†p )2 |0⟩ = (crp)
2 |0⟩ = 0, i.e. there simply are only two energy levels that these

operators can create/destroy as they cannot be filled twice. This means that we are free to call the
either of them the ground state as we did to solve the problem.
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• More generally the anti-commutation relations imply that any multi particle state is anti-symmetric
under the exchange of particles. That is that:

cs†p c
r†
q |0⟩ = −cs†q cr†p |0⟩ .

We can see from this that these terms will vanish if p = q and s = r, and are other wise anti-symmetric.
This is Pauli’s exclusion principle and implies that the corresponding particles obey Fermi-Dirac
statistics.

• We can then think about creation of particles in the following way: We will call particles created by
bs†p |0⟩ = |p, s⟩ electrons and particles created by cs†p |0⟩ = |p̃, s̃⟩ positrons. We can also create particles

of both types, bs†p c
r†
q |0⟩ = |p, s, p̃, r̃⟩.

• We would like these particle states to be normalized in a way that is Lorentz invariant as we did for
the Klein Gordan field. This means we tack on a usual factor of

√
2Ep so our states are:

√
2Epb

s†
p |0⟩ = |p, s⟩ (electron)√

2Epc
s†
p |0⟩ = |p̃, s̃⟩ (positron)

4.11 Charged particles

• Let us now investigate if there is a Noether current and a corresponding conserved charge. Recall
the Dirac Lagrangian from 4.15 is LD = iψ̄γµ∂µψ − mψ̄ψ. We can can clearly see that since this
is quadratic in the spinors there is a symmetry in that we can define ψ → eiαψ and ψ† → e−iαψ†.
Infinitesimally these are: ψ → ψ + iαψ and ψ† → ψ† − iαψ†. We can then use 1.6 to write down that
the conserved current (up to a sign is):

jµ =
∂L

∂(∂µψ)
∆ψ = ψ̄γµψ, ∂µj

µ = 0 (4.45)

Note that for our transformation J µ = 0. We can then use this current to calculate the conserved
charge via 1.7:

Q =

∫
d3xj0 =

∫
d3xψ̄γ0ψ =

∫
ψ†ψd3x

We can then use the expressions 4.37 to calculate this integral:

Q =
∑
r,s

∫
d3xd3pd3p′

(2π)62
√
EpEp′

(
bs†p u

s†(p)e−ip·x + cspv
s†(p)eip·x

)(
brpu

r(p′)eip
′·x + cr†p′v

r(p′)e−ip
′·x
)

=
∑
r,s

∫
d3xd3pd3p′

(2π)62
√
EpEp′

(
bs†p b

r
p′us†(p)ur(p′)eix0(p0−p

′
0)ex·(p

′−p) + cspb
r
p′vs†(p)ur(p′)eix0(p0+p

′
0)ex·(p

′+p)

+bs†p c
r†
p′u

s†(p)vr(p′)e−ix0(p0+p
′
0)e−x·(p′+p) + cspc

r†
p′v

s†(p)vr(p′)e−ix0(p0−p
′
0)e−x·(p′−p)

)
=
∑
r,s

∫
d3p

(2π)32Ep

(
bs†p b

r
pu

s†(p)ur(p) + cspb
r
pv

s†(p)ur(−p) + bs†p c
r†
−pu

s†(p)vr(p′) + cspc
r†
p v

s†(p)vr(p′)
)

Where we have brought in the x integral to create the delta functions. We have also switched to talking
about u and v as function of only p as a short hand so that we can use relations 4.29 and 4.30to write
this cleanly, (remembering that p0 = Ep), as:
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Q =

∫
d3p

(2π)3

∑
s

(
bs†p b

s
p + cspc

s†
p

)
=

∫
d3p

(2π)3

∑
s

(
bs†p b

s
p − cs†p c

s
p

)
+ constant

We do the usual procedure of ignoring the infinite constant that arises due to our treatment of infinity
large and dense space. Thus we have that although our particles have the same positive energy, bs†p
creates particles of charge +1 and cs†p creates charges of −1.

4.12 Dirac Propagator

• We saw in section 4.9.2 how we could write down ⟨0|ψ(x)ψ†(x′) |0⟩ and ⟨0|ψ†(x)ψ(x′) |0⟩ in 4.39 and
4.40. We can now easily use these two write down ⟨0|ψ(x)ψ̄(x′) |0⟩ as:

⟨0|ψ(x)ψ̄(x′) |0⟩ = (iγµ∂µ +m)

∫
d3p

(2π)3
1

2Ep
e−ip·(x−x

′)

And ⟨0| ψ̄(x)ψ(x′) |0⟩ as:

⟨0| ψ̄(x)ψ(x′) |0⟩ = −(iγµ∂µ +m)

∫
d3p

(2π)3
1

2Ep
eip·(x−x

′)

Where all we had to change was act by γ0 to change from ψ† → ψ̄. We can then recognize that these
integrals are just the same as the Klein-Gordan propagator we had above 2.12. So we can write:

⟨0|ψ(x)ψ̄(x′) |0⟩ =(iγµ∂µ +m)D(x− x′)

⟨0| ψ̄(x)ψ(x′) |0⟩ =− (iγµ∂µ +m)D(x′ − x)

• As we mentioned in the Klein-Gordon field the most important propagator for us will be the Feynman
propagator. However since whenever we swap the order of our spinor fields we pick up a minus sign.
This means our fields are what are known as Grassmann variables. What this means for our Feynman
propagator is that we need to define it slightly differently to account for this minus sign. This means
we place a minus sign before the second term in 2.18 leaving us with

SF (x− y) = θ(x0 − y0) ⟨0|ψ(x)ψ̄(y) |0⟩ − θ(y0 − x0) ⟨0| ψ̄(x)ψ(x) |0⟩

This definition allows us to write this more cleanly as:

SF (x− y) = (iγµ∂µ +m)DF (x− y) ≡ ⟨0|T{ψ̄(x)ψ(x)} |0⟩ (4.46)

Where DF (x−y) is defined in 2.18. T is now the time ordering operator for spinor fields. This is great
news as we don’t have to do out the long calculations we did before for getting the explicit form of the
propagators we can just use what we had before in the Klein-Gordon case. So using 2.19 we can write:

SF (x− y) =

∫
d4p

(2π)4
i(γµpµ +m)

p2 −m2 + iϵ
e−ip·(x−y)
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5 Constrained Hamiltonian Systems

• This section is following Dirac’s “little” book “Lectures on Quantum mechanics”.

5.1 Degenerate Hamiltonian

• In section 1.3 we discussed how if we have a degenerate Lagrangian then we are unable to solve for the
q̇ in terms of p and thus unable to write down the Lagrangian. We now want to allow for this no being
the case. In this case it means that their exists relations between q and p: ϕ(p, q) = 0 so that they are
no longer independent.

• To be more general we will talk about their being M relations ϕm(q, p) = 0, m = 1, . . . ,M . We call
these the primary constraints. With this the Legendre transform to H = piq

i−L is no longer uniquely
defined as we can always add to it λmϕm and still have the new Hamiltonian be only a function of qi
and pi.

H ′(p, q) = H + λmϕm = piq̇
i − L+ λmϕm (5.1)

Here upper and lower index’s are only to indicate that we are summing over the variables, we operate
in a euclidean metric so that all upper index’s equal lower. Note that the co-officiants λm can also be
any sort of functions of the q′s and p′s.

5.2 Equations Of Motion

• Since ϕm = 0, we must have that δϕm = 0. Using both of these we can see that taking the variantion
of 5.1 we get:

δH ′ = δH + λmδϕm + δλmϕm = δ(piq̇
i)− δL =

δpiq̇
i + piδq̇

i − ∂L

∂qi
δqi − ∂L

∂q̇i
δq̇i = δH =

∂H

∂qi
δqi +

∂H

∂pi
δpi

=⇒
(
q̇i − ∂H

∂pi

)
δpi +

(
pi −

∂L

∂q̇i

)
δq̇i −

(
∂H

∂qi
+
∂L

∂qi

)
δqi = 0

=⇒
(
q̇i − ∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂qi

)
δqi = 0 (5.2)

Where we have used the fact that H = H(q, p) =⇒ δH = ∂H
∂qi
δqi + ∂H

∂pi
δpi and L = L(q, q̇) =⇒ δL =

∂L
∂qi
δqi + ∂L

∂q̇i
δq̇i, as well as the Lagrange equations ∂L

∂qi
= d

dt

(
∂L
∂q̇i

)
• In the standard case we can then take the co-officiants of δpi and δq

i to separately be zero, but in the
case of a constrained system pi and q

i are no longer independent, being related by at least one ϕm(p, q).
To fix this we need some way of ensuring that the p’s and q’s stay on the surface ϕm(p, q) = 0 in the
phase space. Since ϕm = 0, this means the variations of p and q must satisfy:

δϕm =
∂ϕm
∂qi

δqi +
∂ϕm
∂pi

δpi = 0

We can re-write this in matrix form as the following:

J ·
(
δqi
δpi

)
= 0
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Where Jm,i =
(
∂ϕm
∂qi

∂ϕm
∂pi

)
is the Jacobian matrix of the constraints. The above condition implies that

the variations (δq, δp) must lie in the null space of the Jacobian J . A general solution for such a system
can be expressed as a linear combination of the rows of J , with arbitrary coefficients um. This means

we must have that 5.2 must be equal to um
(
∂ϕm
∂qi

δqi + ∂ϕm
∂pi

δpi

)
, so:

q̇i =
∂H

∂pi
+ um

∂ϕm
∂pi

ṗi = −∂H
∂qi

− um
∂ϕm
∂qi

(5.3)

These are the constrained EoM. Notice the um are not functions of the p’s and q’s.

5.3 Poisson brackets

• Recall from classical mechanics that we had the notion of the Poisson bracket defined for two functions
f(p, q) and g(p, q) as2:

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(5.4)

If we work with function like this f(p, q) and g(p, q) which don’t explicitly depend on time then we can
recognize that:

df

dt
=
∑
i

(
∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

)
(5.5)

We can then recall that for the regular Hamiltonian (not the one with constraints) we have that:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

Which means we can recognize that 5.5 can be used to write the elegant result:

df

dt
= {f,H}

• If we want to extend this notion to the equations of motion in 5.3, then we have to include an extra
term :

dg

dt
=

∂g

∂qi
q̇i +

∂g

∂pi
ṗi

= {g,H}+ um{g, ϕm} (5.6)

This can be show to be the same as {g,H + umϕm}, even though strictly our Poisson bracket is not
defined for functions that are not functions of p and q. Since : {g, umϕm} = {g, um}ϕm+um{g, ϕm} and
ϕm = 0 we can ignore this first term. With this we can say that ġ = {g,HT } where HT = H + umϕm
is called the total Hamiltonian.

2Here for clarity we don’t suppress the summation behind index notation
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5.4 Weak and strong equations

• We can notice that the above procedure fails if we set ϕm = 0 at any step before the last one. This is
due to the fact that even though ϕm = 0, the Poisson brackets involving ϕm may not be. Thus we can
impose the rule that we can only set ϕm = 0 when outside the Poisson bracket. To remind ourselves
of this we write:

ϕm ≈ 0

And call these weak equations. Any other regular equality is called a strong equation. With these we
can see that our equations of motion 5.6 only hold in a weak sense:

ġ ≈ {g,HT } (5.7)

5.5 Secondary constraints

• Since 5.6 holds for all g(p, q) we can apply it for one of the constraints ϕn. We should have that the time
derivative of our constraints are ϕ̇ = 0 as we should have that our constraints are time independent.
This means we have:

{ϕn, H}+ um{ϕn, ϕm} = 0 (5.8)

There are a number of cases this equation can lead to, first of all we could have a false statement, such
as 1 = 0, meaning our original Lagrangian is degenerate. We will ignore equations of the this kind,
and assume we have non-degenerate Lagrangian. We could also have.

– A statement that is true given the primary constraints ϕm, so no new info.

– A statement that is independent of the um’s but adds a new constraint on the p’s and q’s.

– A statement that is independent of the p’s and q’s but constrains the um’s.

Equations of the first kind are trivial. Equations of the second kind are called Secondary constraints
and written:

χ(p, q) = 0

• We can then repeat this consistency checking process with the new secondary constraints, either getting
more secondary constraints or more constraints on the um. This is carried out until all consistency
conditions are exhausted. We will proceed to denote the secondary constraints:

ϕk, k =M + 1, . . . ,M +K

So that they way be written along side the primary constraints. Here K is the number of secondary
constraints.

5.6 Determining um

• After the above process of exhausting all the constraints of the system we are left with a set of equations
of the third kind, restricting the um. These take the from:

{ϕm, H}+ un{ϕm, ϕn} = 0

Since the um are unknowns we can consider these equations a set of non-homogeneous linear equations
in the um’s with co-officiants that are functions of p’s and q’s. This equation will have a solution as we
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have assumed that we have a non-degenerate Lagrangian. We call this solution Um. This solution is
not unique however as we can always add to it a solution V m, which is a solution to the homogeneous
equation V m{ϕm, ϕn} = 0. Since we may add any number of these equations, the most general equation
for um is:

um = Um + vaV m
a

Where the va are completely arbitrary (they may even be functions of time!). This means our total
Hamiltonian (HT = H + umϕm) takes the form:

HT = H + Umϕm + vaV m
a ϕm (5.9)

5.7 First/Second Class

• We call any dynamic variable R(p, q) to be first class, if it has zero Poisson bracket with all the
constraints ϕm’s:

{R,ϕm} ≈ 0, m = 1, . . . ,M +K

Otherwise R is Second class. Note that since the only quantities that vanish weakly are the constraints
ϕm, this means that the Poisson bracket of R and ϕm must be strongly equal to some linear combination
of the ϕm:

{R,ϕm} = rnϕn

It can also be shown that the Poisson bracket of two first class functions, is also first class. Looking at
our total Hamiltonian 5.9, we can see that the number arbitrary co-officiants va is equal to the number
of independent primary first class constraints. This is because there is a va for each V m

a , and there is
a V m

a for each ϕm such that {ϕm, ϕn} = 0 for all n.

5.8 Dirac Bracket

• If we now focus on second class constraints, we can see that there is an issue that arises. Second
class constraints by definition have non-vanishing Poisson brackets, meaning we could have {ϕm, ϕn} =
c = const. This becomes an issue when we try to transport to the quantum mechanical case, where
the Poisson bracket becomes the commutator. This then has [ϕm, ϕn] |ψ⟩ ̸= 0 which contradicts the
requirement that both constraints vanish when acting on physical states.

This indicates that we need to generalize our definition of the Poisson bracket that is more consistent
with the constraints. If we now label the second class constraints ϕ̃m and define the matrix:

Cab = {ϕ̃a, ϕ̃b} (5.10)

Dirac proved that this matrix will always be invertible. With this and the definition of the inverse as
Cab ≡ C−1

ab (st: CabCbc = δac ), we can define a new bracket called the Dirac Bracket for two functions
f(p, q) and g(p, q):

{f, g}D = {f, g} − {f, ϕ̃a}Cab{ϕ̃b, g} (5.11)

Where once again the repeated indices mean summation. It is straightforward to prove this satisfies
the same properties as the Poisson bracket. This bracket also still gives us the EoM 5.7, as {f,HT }D =
{f,HT } − {f, ϕ̃a}Cab{ϕ̃b, HT } ≈ {f,HT } as {ϕ̃b, HT } = 0 due to the fact that our total Hamiltonian
can be shown to be first class.
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We can also see that the main benefit of this bracket is that if we take Dirac bracket of any function
f and a secondary constraint, ϕ̃m, then we see:

{f, ϕ̃m}D = {f, ϕ̃m} − {f, ϕ̃a}Cab{ϕ̃b, ϕ̃m}
= {f, ϕ̃m} − {f, ϕ̃a}CabCbm
= {f, ϕ̃m} − {f, ϕ̃m} = 0 (5.12)

Meaning we can always set the secondary constraints ϕ̃m = 0, in a strong sense.
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6 Quantum Electrodynamics

• Finally we can begin to quantize the interactions between charged particles using the techniques we
have developed above

6.1 Maxwell Lagrangian

• We know from classical field theory, that in electromagnetism the Lagrangian is:

LMax = −1

4
FµνF

µν (6.1)

Where Fµν ≡ ∂µAν − ∂νAµ, with:

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 (6.2)

and Aµ is the vector potential.

• We can then calculate the momentum density defined in 1.4, where we take derivative with respect to
the time derivative of the vector potential, ∂0A

µ ≡ Ȧµ, to calculate this it is first easier to calculate:

∂Fµν

∂Ȧµ
=

∂

∂Ȧµ
(∂µAν − ∂νAµ)

= δµ0 δ
ν
σ − δµσδ

ν
0

Which means

πσ =
∂L
∂Ȧσ

=
∂

∂Ȧσ

(
−1

4
ηµδF

δγηγνF
µν

)
= −1

4
ηµδηγν

[(
δδ0δ

γ
σ − δγσδ

γ
0

)
Fµν + F δγ (δµ0 δ

ν
σ − δµσδ

ν
0 )
]

= −1

4
[F0σ − Fσ0 + F0σ − Fσ0] = Fσ0

• Since Fµν is anti-symmetric, we must have that F00 = 0, this means that we have a primary constraint!:

π0 ≈ 0

Note that this must occur for every point in space, so it is not a single constraint. The other components
of πµ are just equal to (minus) the components of the Electric Field, πi = −Ei.

6.2 Hamiltonian

• We can then proceed to write down a Hamiltonian, including for now, π0, to do this we first need to
calculate L = −1

4FµνF
µν :

−1

4
FµνF

µν = −1

4
F0iF

0i − 1

4
Fi0F

i0 − 1

4
FijF

ij

=
1

2
E2 − 1

4
FijF

ij

=
1

2

(
E2 −B2

)
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Where we have used the matrix definitions 6.2. We can then calculate the Hamiltonian as:

H =

∫
[πµA

µ − L] d3x =

∫ [
π0Ȧ

0 + (−Ei)(∂0Ai)−
1

2

(
E2 −B2

)]
d3x

We then have the fact that E = −∇ϕ − ∂0A, so the electric field is related to the 4-potential, via:
Ei = −∂iA0 − ∂0A

i. This means:

H =

∫ [
π0Ȧ

0 + Ei∂iA
0 +

1

2

(
E2 +B2

)]
d3x (6.3)

=

∫ [
1

2

(
E2 +B2

)
+ π0∂0A

0 −A0∂iE
i

]
d3x (6.4)

Where we have integrated the last term by parts.

6.2.1 Consistency conditions

• We can then put our constraints through consistency conditions as in 5.8. For π0 ≈ 0, to be satisfied
at all times we must have that:

0 = π̇0 = {π0, H}+ {π0, π0} = {π0, H}

To evaluate this we need to write down explicitly what the Poisson bracket has become in this contin-
uous case of the electromagnetic field, for two functions F (πµ, Aµ) and G(πµ, Aµ)

3:

{F (x), G(y)} =

∫
d3z

(
∂F (x)

∂Aµ(z)

∂G(y)

∂πµ(z)
− ∂G(y)

∂Aµ(z)

∂F (x)

∂πµ(z)

)
(6.5)

With this we can see that:

{π0(x), H} = −
∫
d3z

∂H

∂Aµ(z)

∂π0(x)

∂πµ(z)
= −

∫
d3z

∂H

∂A0(z)

∂π0(x)

∂π0(z)

= −
∫
d3z

∫
d3x′

∂(A0∂iE
i)

∂A0(z)
δ(x− z) = −

∫
d3z

∫
d3x′δ(x′ − z)δ(x− z)∂iE

i = 0,

=⇒
∫
d3x′δ(x− x′)∂iE

i = 0, =⇒ ∂iE
i = 0 =⇒ ∂iπi = 0

This is a secondary constraint! Which we can more easily recognize as Gauss’s Law. It can be checked
that there are no further constraints on this system. With the these two constraints we can see that
we do not need to add any extra constraints of the form u1∂iEi, u2π0, to our Hamiltonian 6.4, as this
would essentially only result in shifting A0 and Ȧ0.

6.3 Gauge Fixing

• It can be checked that {π0, ∂iπi} ≈ 0, meaning both these constraints are first class. Now this is not
ideal as we can recall from section 5.7, that the number of first class constraints is the same as the
number of arbitrary co-officiants in our total Hamiltonian 5.9 . To fix this we can introduce an equal
number of gauge fixes that will act as constraints. Introducing new constraints, if chosen right, will
change some of the first class constraints to second class, as the old constraints may not have 0 Poisson
bracket with the new constraints.

3Note that although I am using partial derivatives here I really should be using “δ” instead of “∂” as these are functional
derivatives. Hence why they give rise to delta functions.
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• We are used to using several gauges in classical electromagnetism. One of these is the Coulomb gauge,
∂iA

i = 0. With this constraint we must have that this stays true for later times so we must check the
consistency relation with the Hamiltonian as in 5.8. This calculation will involve the calculation of the
derivative ∂

(
∂iA

i(x)
)
/∂Aj(z), which is non-trivial. This calculation can be easily carried out through

the expansion of ∂iA
i in the following form:

∂iA
i(x) = −

∫
d3x′Ai(x′)

∂

∂(x′)i
δ(x− x′) (6.6)

This expansion can be easily seen to be true if we integrate by parts. With this we can now see that 4:

∂
(
∂iA

i(x)
)

∂Aj(z)
= −

∫
d3x′

∂Ai(x′)

∂Aj(x)

∂

∂(x′)i
δ(x− x′) = −

∫
d3xδijδ(x

′ − z)
∂

∂(x′)i
δ(x− x′)

=
∂

∂zj
δ(x− z) (6.7)

This will be the only non-vanishing term, meaning:

∂0(∂iA
i) = {∂iAi, H} =

∫
d3z

∂
(
∂iA

i(x)
)

∂Aj(z)

∂H

∂πj

We can then calculate ∂H/∂πj from the first definition of H in 6.3. With this and the fact that
πi = −Ei :

∂H

∂πj(z)
= −

∫
d3x′

∂

∂Ej(z)

(
1

2
E2 − Ei∂iA

0

)
= −

∫
d3x′δ(x− z)(Ej − ∂jA

0) = (Ej − ∂jA
0)

Where the partial derivative is now wrt z. Combining this with 6.7 we have:

{∂iAi, H} =

∫
d3z

∂

∂zj
δ(x− z)

(
Ej − ∂jA

0
)

= −
∫
d3zδ(x− z)

∂

∂zj
(
Ej − ∂jA

0
)

= −∂jEj − ∂j∂jA
0 ≈ ∂j∂jA

0

Where in the second line we have used integration by parts and the last step holds weakly as ∂jE
j ≈ 0.

For the constraint to be consistent we must have that {∂iAi, H} ≈ ∂j∂jA
0 = 0. For this to be satisfied

we could have A0 ∝ xi, but this would mean our fields would not vanish at infinity, so we must have
that A0 = 0.

• With this we have found 2 new constraints, the same number as arbitrary co-officiants in our total
Hamiltonian due to the presence of 2 first class constraints π0 ≈ 0 and ∂iπi ≈ 0. Together the
constraints are:

π0 ≈ 0 ∂iπi ≈ 0

A0 ≈ 0 ∂iA
i ≈ 0

(6.8)

6.4 Constraint Matrix

• The next step is to calculate the constraint matrix 5.10. We do this with the hopes that it will allow
us to construct the Dirac bracket for this theory. We have four constraints as seen in 6.8, this means
Cab = {ϕa, ϕb} will be a 4× 4 matrix. We will order the constraints by π0, ∂

iπi, A
0, ∂iA

i ≈ 0. We can

4Note that this result can be seen in an easier way if we just commute the derivatives.
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easily see that Cii = 0 as the constraints as {f, f} = 0 by definition. We are left to check the remaining
12 co-officiants, but we only need to check 6 as this matrix is by definition anti-symmetric.

A few of these follow directly from the definition of the continuous Poisson bracket 6.5:

{π0, ∂iAi} = −
∫
d3z

∂π0
∂π0�

�
�
��>

0
∂(∂iA

i)

∂A0
= 0

{A0, ∂
iπi} =

∫
d3z

∂A0

∂A0
�
�

�
��>

0
∂(∂iπi)

∂π0
= 0

We made the claim earlier that it can be shown that {π0, ∂iπi} ≈ 0, we can now do this calculation.
To do this we can use the general property 6.6, with Ai replaced with πi. This way:

{π0, ∂iπi} = −
∫
d3x′{π0, πi}

∂

∂(x′)i
δ(x− x′)

{π0, πi} = −
∫
d3z

∂π0
∂π0�

�
��
0

∂πi
∂A0

=⇒ {π0, ∂iπi} = 0

In the exact same manner if we replace πi with A
i we get that {A0, ∂iA

i} = 0. Then for {π0, A0} we
can see that:

{π0(x), A0(y)} = −
∫
d3z

∂π0(x)

∂π0(z)

∂A0(y)

∂A0(z)
= −

∫
d3zδ(x− z)δ(y− z) = −δ(x− y)

Then lastly, we can see that:

{∂iπi(x), ∂jAj(y)} =

∫
d3x′d3y′

∂

∂(x′)i
δ(x− x′){πi, Aj}

∂

∂(y′)j
δ(y− y′)

{πi(x), Aj(y)} = −
∫
d3z

∂πi(x)

∂πk(z)

∂Aj(y)

∂Ak(z)
= −δikδkj

∫
d3zδ(x− z)δ(y− z) = −δikδkj δ(x− y)

=⇒ − {∂iπi(x), ∂jAj(y)} =

∫
d3x′d3y′

∂

∂(x′)i
δ(x− x′)δikδ

k
j δ(x− y)

∂

∂(y′)j
δ(y− y′)

= − ∂

∂xk

∂

∂yk
δ(x− y)

Where in the last step we have integrated by parts twice.

• Ordering the constraints by π0, ∂
iπi, A

0, ∂iA
i ≈ 0, Cab takes the form:

(Cab) =


0 0 −1 0

0 0 0 − ∂
∂xk

∂
∂yk

1 0 0 0

0 ∂
∂xk

∂
∂yk

0 0

 δ(x− y) (6.9)

• What we need in the Dirac bracket is the inverse of this matrix. We will see later that the terms we are
interested here are the terms with the derivatives of the delta functions. To explicitly find the form of
C−1
ab ≡ Cab we need to consider a continuous form of the calculation 5.12. We must have that the Dirac

bracket of one of the secondary constraints is always 0, meaning we must have that (see definition of
continuous Dirac Bracket below 6.11):∫

d3z1

∫
d3z2{f(x), ϕa(z1)}Cab (z1, z2) {ϕb(z2), ϕc(y)} ≡ {f(x), ϕc(y)}

=⇒ Cab (z1, z2) {ϕb(z2), ϕc(y)} = Cab (z1, z2)Cbc (z2,y) = δac δ (z1 − z2) δ(z2 − y) (6.10)
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Looking at the form of 6.9 we can see that C42 (z2,y) =
∂

∂(z2)k
∂
∂yk

δ(z2 − y). Since the delta function
is a function of z2 − y we can change the derivative with respect to y to minus the derivative with
respect to z2. This way the derivatives becomes the Laplacian △ = ∂i∂i. With this identification the
condition for the inverse matrix 6.10 becomes:

=⇒ −Cab (z1, z2)△δ(z2 − y) = δ (z1 − z2) δ(z2 − y)

Since this is all inside an integral we can integrate by parts to make this △ act on the Cab (z1, z2) (It
does not hit the {f(x), ϕa(z1)} as the derivatives in △ are wrt z2). This means:

△Cab (z1, z2) δ(z2 − y) = δ (z1 − z2) δ(z2 − y)

=⇒ △Cab (z1, z2) = δ (z1 − z2)

This is the definition of a greens function! Which we often denote with a Cab (z1, z2) = G(z1, z2)
5.

6.5 The Dirac Bracket

• This matrix allows us to explicitly calculate the form of the Dirac Bracket. This was defined for discrete
systems in 5.11, but we will need to modify it for the continuous case, by:

{f(x), g(y)}D = {f(x), g(y)} −
∫
d3z1

∫
d3z2{f(x), ϕa(z1)}Cab(z1, z2){ϕb(z2), g(y)} (6.11)

Finally we have bracket that encapsulates the constraints and allows us to set our constraints 6.8 in a
strong sense, i.e. before we explicitly calculate the bracket.

• If we want to apply this to our electromagnetic case, we can first recall what we had from the regular
Poisson bracket. The positions are given by our field Aj and the conjugate momenta given by πi = −Ej .
Calculating their Poisson bracket we find:

{πi(x), Aj(y)} = −
∫
d3z

∂πi(x)

∂πk(z)

∂Aj(y)

∂Ak(z)
= −

∫
d3zδki δ

j
kδ(x− z)δ(y− z) = −δji δ(x− y)

However, this does not encode our constraints, which we can see by taking the partial derivatives with
respect to x and y:

{∂iπi(x), ∂jAj(y)} = − ∂

∂xk

∂

∂yk
δ(x− y)

Once gain when we pass to the quantum theory and turn this Poisson bracket to a commutator, we
expect the LHS of this to vanish due to the constraints. However, the RHS of this equation will not
vanish. Thankfully in the last section we developed a bracket that still gives us the equations of motion
while respecting the constraints of the system. This means we can write down the Dirac bracket of
πi(x) and , A

j(y):

{πi(x), Aj(y)}D = {πi(x), Aj(y)} −
∫
d3z1

∫
d3z2{πi(x), ϕa(z1)}Cab(z1, z2){ϕb(z2), Aj(y)} (6.12)

• We then need to calculate all the Poisson brackets of πi and Aj with the constraints 6.8. For πi we
can see the vanishing brackets are:

{πi, π0} = 0, {π0(x), A0(y)} = −
∫
d3z

∂π0(x)

∂πk(z)�
�

�
��>

0
∂A0(y)

∂Ak(z)
= 0

{πi, ∂jπj} = −
∫
d3y′{π,πj}

∂

∂(y′)j
δ(y− y′), {πi, πj} = −

∫
d3z

∂πi
∂πk�

�
��
0

∂πj
∂Ak

=⇒ {πi, ∂jπj} = 0

5Note that the greens function of an operator is also often denoted as one over that operator.
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Similarly for Aj , the vanishing terms are:

{Ai, A0} = 0, {Ai(x), π0(y)} =

∫
d3z

∂Ai(x)

∂Ak(z)�
�

�
�>
0

∂π0(y)

∂πk(z)
= 0

{Ai, ∂jAj} = −
∫
d3y′{Ai, Aj} ∂

∂(y′)j
δ(y− y′), {Ai, Aj} =

∫
d3z

∂Ai

∂Ak�
�
��7
0

∂Aj

∂πk
=⇒ {Ai, ∂jAj} = 0

• The only non vanishing terms are:

{πi(x), ∂jAj(y)} =

∫
d3y′ {πi(x), Aj(y)}︸ ︷︷ ︸

−δji δ(x−y)

∂

∂(y′)j
δ(y− y′) = δji

∫
d3y′

(
∂

∂(y′)j
δ(x− y)

)
δ(y− y′)

= δji
∂

∂yj
δ(x− y)

{Ai(x), ∂jπj(y)} =

∫
d3y′ {Ai(x), πj(y)}︸ ︷︷ ︸

δijδ(x−y)

∂

∂(y′)j
δ(y− y′) = −δij

∫
d3y′

(
∂

∂(y′)j
δ(x− y)

)
δ(y− y′)

= −δij
∂

∂yj
δ(x− y)

This finally allows us to calculate the Dirac bracket 6.12:

{πi(x), Aj(y)}D = {πi(x), Aj(y)} −
∫
d3z1

∫
d3z2{πi(x), ∂kAk(z1))}C42(z1, z2){∂lπl(z2), Aj(y)}

= {πi(x), Aj(y)} −
∫
d3z1

∫
d3z2δ

k
i

(
∂

∂xk
δ(x− z1)

)
C42(z1, z2)δ

i
l

∂

∂yl
δ(y− z2)

= {πi(x), Aj(y)} −
∫
d3z1

∫
d3z2δ(x− z1)δ(y− z2)

(
∂

∂xi
∂

∂yj
G(z1, z2)

)
= −δji δ(x− y)− ∂

∂xi
∂

∂yj
G(x,y)

Swapping the order of these, adding an i as the operators must be hermitian and changing the Dirac
Poisson Bracket to a commutator we have our commutation relations:

[Aj(x), πi(y)] = iδji δ(x− y) + i
∂

∂xi
∂

∂yj
G(x,y)

We can see how this looks in momentum space by considering how the Laplacian △ acts on its greens
function. We must have that △G(x,y) = δ(x− y), so:

△
∫

d3p

(2π)3
G(p)eip·(x−y) = δ(x− y) =⇒ G(p) = − 1

p2

=⇒ [Aj(x), πi(y)] = i

∫
d3p

(2π)3

(
δji +

pip
j

p2

)
eip·(x−y)

Then using the fact that πi = −Ei and lowering the index j on both sides (which picks up a minus
sign on the vectors Aj and pj), we arrive at the commutation relations:

=⇒ [Aj(x), Ei(y)] = i

∫
d3p

(2π)3

(
δij −

pipj
p2

)
eip·(x−y) (6.13)
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6.6 Polarization Vectors

• We would like to proceed now to write down a general expression for the Aµ(x) field. To this we first
need to find what equation of motion it must satisfy. We start with the Lagrangian density 6.1 and
expand it as follows:

LMax = −1

4
[∂µAν − ∂νAµ] [∂µAν − ∂νAµ]

=
1

2
[∂µAν∂νAµ − ∂µAν∂µAν ]

Where we have relabeled some indices to arrive at this last expression. We can now plug this into the
equations of motion 1.3 (this was for a scalar field but we can simply replace ϕ with Aν). This results
in:

∂µ (∂
νAµ)− ∂µ∂

µAν = 0

This first term expands to ∂µ (∂
νAµ) = ∂ν(∂iA

i) + ∂0∂
νA0. This first term vanishes as we are in

the Coulomb gauge. For the last term we can recognize that this term must have come from the
∂0Aν∂νA0 = ∂0Ai∂iA0

6 part of the Lagrangian. This term can then be integrated by parts to have
−∂0∂iAiA0 which also vanishes in the coulomb gauge. Thus we can say that the Equations of motion
are:

∂µ∂
µAν = □Aν = 0

So each component of Aν satisfies the massless Klein Gordon equation 2.3.

6.7 Commutation Relations

• We can now expand Aµ(x) in terms of its Fourier transform. But we should first remember that our
choice of constraints and gauges have made it so that A0 = 0 so we are not interested in that term.
The expansion is then:

A =

∫
d3p

(2π)3
ξ(p)eip·x

• Immediately from this we can see that the Coulomb gauge ∂iA
i = 0 implies that:

ξ · p = 0

Thus to be most general we can pick ξ to be a linear combination of two orthonormal polarization
vectors ϵr, r = 1, 2 which are orthogonal to p so ϵr ·p = 0. Them being orthonormal means ϵr ·ϵ∗r′ = δrr′ .
With these vectors and the fact that the components of A satisfy the KG equation we can write down
the mode expansion of A:

A =

∫
d3p

(2π)3
1√
2|p|

2∑
r=1

[
ϵr(p)a

r
pe
ip·x + ϵ∗r(p)a

r†
p e

−ip·x
]

E =

∫
d3p

(2π)3
(−i)

√
|p|
2

2∑
r=1

[
ϵr(p)a

r
pe
ip·x + ϵ∗ra

r†
p e

−ip·x
]

(6.14)

(6.15)

6This simplification can be made as any terms with µ = ν vanish as Fµν has only 0’s on its diagonal
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Where we have made the same sort of expansion for E as we also have that ∇ · E = 0 and for the
different factors we have taken inspiration from our expression for momentum density 2.7 so that we
can arrive at the commutation relations we derived above.

• The next step is to derive the commutation relations. But before we do this we need to derive a
sum relation for the polarization vectors. In plugging our above expressions into the the commutation
relations 6.13 we will have a sum over the product of two different components of the ϵr’s. To find an
expression for this we posit that we can expand this product over possible tensors:∑

r

ϵir(p)ϵ
j∗
r (p) = Aδij +Bpipj

Based on the two properties that these vectors satisfy, these are the only possible tensors. We can now
impose the condition that ϵr · ϵ∗r′ = δrr′ . If we multiply both sides by ϵi∗s and sum over i we get the
following: ∑

i

ϵi∗s (p)ϵ
i
s(p)ϵ

j∗
s (p) =

∑
i

[
Aδijϵi∗s (p) +Bpipjϵ

i∗
s (p)

]
=⇒ ϵj∗s (p) = Aϵj∗s (p) + 0 =⇒ A = 1

Where we have used the fact that
∑

i ϵ
i
s(p)ϵ

i∗
s (p) = 1 and

∑
i piϵ

i∗
s (p) = 0. We can then repeat this by

multiplying by pi and summing over i:∑
r

∑
i

piϵis(p)ϵ
j∗
s (p) = pj +Bpj |p|2

=⇒ B = − 1

|p|2

This gives the nice expression that:

∑
r

ϵir(p)ϵ
j∗
r (p) = δij − pipj

|p|2

We can now easily use this to check what relation the creation and annihilation operators satisfy:

[Ai(x), Ej(y)] =

∫
d3pd3q

(2π)6

√
|q|
4p|

∑
r,s

[
ϵir(p)ϵ

j∗
s (q)[arp, a

s†
q ]ei(p·x−y·q) + ϵi∗r (p)ϵ

j
s(q)[a

r†
p , a

s
q]e

−i(p·x−y·q)

+ ϵir(p)ϵ
j
s(q)[a

r
p, a

s
q]e

i(p·x+y·q) + ϵi∗r (p)ϵ
j∗
s (q)[ar†p , a

s†
q ]e−i(p·x+y·q)

]
So we can see this is equal to 6.13 if the creation and annihilation operators satisfy:

[arp, a
s
q] = [ar†p , a

s†
q ] = 0

[arp, a
s†
q ] = (2π)3δrsδ(3)(p− q)
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6.8 QED Propagator

• We can then simply calculate the Feynman propagator for QED by calculating the time ordered product
of the two fields:

⟨0|T{Ai(x)Aj(y)} |0⟩ = ⟨0|T

{∫
d3pd3q

(2π)6
1√

4|p||q|

∑
r,s

[
ϵir(p)a

r
pe
ip·x + ϵi∗r (p)a

r†
p e

−ip·x
]

×
[
ϵjs(q)a

s
qe
iq·y + ϵj∗s (q)as†q e

−iq·y
]}

|0⟩

= ⟨0|T
{∫

d3p

(2π)3
1

2|p|

(
δij −

pipj
p2

)
e−ip·(x−y)

}
|0⟩

From here we can employ the same techniques as we did with the KG propagator 2.14 to make this
an integral over p0 (remembering also that A has m = 0 since its components satisfy the massless
KG equation). We can also see that the time ordering will make this a Feynman propagator which we
achieve by having an +iϵ in the denominator. The final result is:

DF
ij(x− y) =

∫
d4p

(2π)4
i

p2 + iϵ

(
δij −

pipj
p2

)
e−ip·(x−y) (6.16)

• It turns out that this is not the most useful version of the Propagator in QED. A cleaner Lorentz
invariant version is obtained from following the above procedure for the Lorentz gauge. This is not as
nice as it is for the Coulomb gauge. The nice thing is that it can be shown that the two propagators,
when placed in the calculations that the Feynman rules for QED involve, result in the same terms. A
proof of this can be seen on page 142 of David Tong’s notes on QFT. This propagator takes the form:

⟨0|T{Aµ(x)Aν(y)}|0⟩ =
∫

d4p

(2π)4
−iηµν
p2 + iϵ

e−ip·(x−y) ≡ DF
µν(x− y) (6.17)
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7 Interacting Fields

• We have seen in the interacting theory, that the main quantity of interest to us is the two point
correlation function as this is related to the Feynman propagator 2.18. We will be doing this for the
Klein Gordon field with the addition to the Lagrangian of the interaction term λ

4!ϕ
4. We don’t try do

this for ϕ3 as this is not bounded from below and we must always have a positive definite Hamiltonian
and ϕ3. It also turn out that any terms of the form ϕn, n > 4 are not physical, as since the scalar field ϕ
must have dimension [mass]7, then the coupling constants for n > 4 must have units 1/[mass] meaning
on low energy scales these terms dominate. This is nonphysical as we don’t expect interactions to
dominate at low energies.

7.1 Two Point Function

• It is not guaranteed that the vacuum of the interacting theory will be the same as in the free fields
case. To account for this we will denote the vacuum in the interacting case by |ω⟩. The two point
function is then:

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ (7.1)

This quantity is important as it can be interpreted physically as the probability amplitude for propa-
gation of a particle or excitation between y and x. We will approach this perturbativly, meaning we
expand around the free field solution ϕI in powers of the interaction parameter λ. This is handy as we
know in the free field case the propagator is ⟨0|T{ϕI(x)ϕ(y)I} |0⟩ = DF (x − y). The Hamiltonian is
the Klein Gordan Hamiltonian 2.2 along with the addition of the interaction Hamiltonian Hint:

H = H0 +

∫
d3x

λ

4!
ϕ4(x) (7.2)

We know the fields will then be time evolved by:

ϕ(t,x) = eiH(t−t0)ϕ(t0,x)e
−iH(t−t0)

We can also consider the interaction free field, i.e.:

ϕ(t,x)λ→0 = eiH0(t−t0)ϕ(t0,x)e
−iH0(t−t0) ≡ ϕI(t,x) (7.3)

Since this is the free field we already know the solution given by 2.11. If we make the assumption that
at t0 these fields are the same at t0 then we can write ϕ(t0,x) = e−iH0(t−t0)ϕI(t,x)e

iH0(t−t0), meaning
we can write our field in terms of the free field:

ϕ(t,x) = eiH(t−t0)e−iH0(t−t0)ϕI(t,x)e
iH0(t−t0)e−iH(t−t0)

≡ U †(t, t0)ϕI(t,x)U(t, t0)

Where we have defined the unitary operator U(t, t0) = eiH0(t−t0)e−iH(t−t0). We can note that U(t, t0)
satisfies the following differential equation subject to the boundary condition U(t0, t0) = 1:

i
∂

∂t
U(t, t0) = eiH0(t−t0) (H −H0) e

−iH(t−t0) = eiH0(t−t0)Hinte
−iH(t−t0)

= eiH0(t−t0)Hinte
−iH0(t−t0)eiH0(t−t0)e−iH(t−t0) = HI(t)U(t, t0)

7We can figure this out from imposing that the action must be dimensionless (since ℏ = 1) then our Lagrangian 2.1 must
have units [mass]4
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Where we have defined:

HI = eiH(t−t0)Hinte
−iH0(t−t0) =

∫
d3x

λ

4!
ϕ4I(t,x)

This last equation is true as the the sandwiching of ϕ(t0,x) in between exponentials eiH(t−t0) is the
exactly the definition of ϕI as seen in 7.3. It is also the case that this changes any power of ϕ to ϕI as
the exponentials are unitary so we can place 1 = eiH(t−t0)e−iH(t−t0) in between each of the ϕ′s.

7.2 Dyson’s Formula

• If we can solve this equation for U , then in principle we will have U = U(ϕI), which is good as
we already know the form of ϕI . This differential equation should have a solution something like

U(t, t0) ∼ e
−i

∫ t
t0
dt′HI(t

′)
, however, the actual solution is more complicated, due to the fact that the HI

is an operator. To first order in HI we can see that the solution must take the form:

U(t, t0) = 1+ (−i)
∫ t

t0

dt1HI(t1) +O
(
H2
I

)
However, we will have issues of ordering when multiple HI are introduced. To fix this we need to
consider causality. This means that we should always have the operators acting in time order, meaning
the operator evaluated at the earliest time should be on the right and the operator evaluated at the
latest time on the left. This means the second order should take the form:

(−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2)

Confident that this is the correct form we can now proceed to write this in a simpler manner. To do
this we can consider the fact that geometrically this integral is over a triangle in the t1 − t2 plane (see
image pg 85 of Peskin), made by the square of side lengths t− t0 and the line t1 = t2. But the integral
over this upper triangle is the same as the integral over the lower triangle, as it does not matter which
variable we call t1 and which t2. This means we can simply consider the integral over the entire square
and divide by 2. However, we still need to consider causality, so we make sure the operators are time
ordered using the time ordering operator T as in 2.18:

(−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) =
(−i)2

2

∫ t

t0

dt1

∫ t

t0

dt2T{HI(t1)HI(t2)}

This can then be extended to higher order terms following the same logic:

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnHI(t1)HI(t2) · · ·HI(tn)

=
(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

T{HI(t1)HI(t2) · · ·HI(tn)}

This allows us to write down the full solution as:

U(t, t0) = T

{
exp

(
−i
∫ t

t0

dt′HI(t
′)

)}
(7.4)

This is known as Dyson’s formula.
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7.2.1 Properties of Time evolution

• This time evolution operator must satisfy the following properties.

– Causality: U(t1, t2)U(t2, t3) = U(t1, t3), which is easily seen to be satisfied by Dyson’s formula
7.4, as the integrals should add the bounds and become one integral.

– Unitarity: U(t1, t3)U
†(t2, t3) = U(t1, t2), this follows from manipulation of the first property.

7.3 Vacuum State

• Now that we have an expression for the evolution operator purely in terms of the interaction free field
ϕI , we would like to see if we can find an expression for the ground state, |Ω⟩. We can start with the
vacuum state |0⟩ and involve it in time by time T , e−iHt |0⟩ =. We can posit that the resulting state
will at least contain the ground state |Ω⟩ as well as a number of other excited states. These will satisfy
a completeness relation |Ω⟩ ⟨Ω|+

∑
n |n⟩ ⟨n| = 1 meaning we can insert this in between the e−iHt and

the |0⟩:

e−iHt |0⟩ = e−iE0t |Ω⟩ ⟨Ω|0⟩+
∑
n

e−iEnt |n⟩ ⟨n|0⟩ (7.5)

Where the En are the eigenvalues of H. Since |Ω⟩ is the ground state we must have that En > E0. We
can exploit this energy difference by taking the limit as t → ∞, however, we need to include a slight
imaginary part to the limit t → ∞(1 − iϵ) , the imaginary part −iϵ exponentially decays the terms
with e−iEnt faster then the first term with e−iE0t leaving us with only the first term in 7.5. This means
we may write:

|Ω⟩ = lim
t→∞(1−iϵ)

e−iHt

e−iE0t ⟨Ω|0⟩
|0⟩ (7.6)

Since t is large in the limit we can manipulate this by adding a constant t0 in the exponentials, we can
also abuse the fact that H0 |0⟩ = 0 to add in factors like: eiH0(t−t0) |0⟩ = |0⟩. This means that we can
write:

|Ω⟩ = lim
t→∞(1−iϵ)

e−iH(t+t0)

e−iE0(t+t0) ⟨Ω|0⟩
eiH0(t+t0) |0⟩

= lim
t→∞(1−iϵ)

e−iH(t0−(−t))eiH0(t0−(−t))

e−iE0(t+t0) ⟨Ω|0⟩
|0⟩

= lim
t→∞(1−iϵ)

U(t0,−t)
e−iE0(t+t0) ⟨Ω|0⟩

|0⟩

In a similar manner we can expand ⟨Ω|, this takes the form of the complex conjugate of the expansion
of |Ω⟩, but with the addition of taking the limit as t → −∞ as now that is the limit that will isolate
the En term. Since this is the same as taking the limit −t→ ∞ we can write this as:

⟨Ω| = lim
t→∞(1−iϵ)

⟨0| U(t, t0)

e−iE0(t−t0) ⟨0|Ω⟩

• We can then use this to expand our two point function 7.1:

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩

= lim
t→∞(1−iϵ)

⟨0| U(t, t0)U
†(x0, t0)ϕI(x)U(x0, t0)U

†(y0, t0)ϕI(y)U(y0, t0)U(t0,−t)
e−2iE0t| ⟨0|Ω⟩ |2

|0⟩

= lim
t→∞(1−iϵ)

⟨0| U(t, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−t)
e−2iE0t| ⟨0|Ω⟩ |2

|0⟩ (7.7)
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We can then get rid of this pesky denominator by using the fact that the ground state should be
normalized, i.e. ⟨0|0⟩ = 1:

1 = ⟨Ω|Ω⟩ = lim
t→∞(1−iϵ)

⟨0| U(t, t0)

e−iE0(t−t0) ⟨0|Ω⟩
U(t0,−t)

e−iE0(t+t0) ⟨Ω|0⟩
|0⟩

= lim
t→∞(1−iϵ)

⟨0| U(t,−t)
e−2iE0t| ⟨0|Ω⟩ |2

|0⟩

So we can write:

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ = lim
t→∞(1−iϵ)

⟨0|U(t, x0)ϕI(x)U(x0, y0)ϕI(y)U(y0,−t) |0⟩
⟨0|U(t,−t) |0⟩

So far we have considered x0 > y0 so that these terms have been time ordered, but we can write this in
a general manner by adding the time ordering operator. Finally to make this look nicer we can write
all of these terms using Dyson’s formula 7.4. Since Dyson’s formula only involves ϕI each of these
operators commute with ϕi(x) and ϕI(y), this means we can combine the exponential expressions as
the bounds are in order:

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ = lim
t→∞(1−iϵ)

⟨0|T
{
ϕI(x)ϕI(y)exp

(
−i
∫ t
−t dt

′HI(t
′)
)}

|0⟩

⟨0|T
{
exp

(
−i
∫ t
−t dt

′HI(t′)
)}

|0⟩
(7.8)

7.4 Wick’s Theorem

• Since HI is comprised of ϕI we have essentially, with the above discussion reduced the problem of calcu-
lating correlation functions to the calculation of terms that look like ⟨0|T{ϕI(x1)ϕI(x2) · · ·ϕI(xn)} |0⟩.
But we can abuse the fact that our non interacting fields, as seen in 2.11, are constructed of positive
frequency terms (terms of the form e−ipx), which are attached to creation operators and negative fre-
quency terms (eipx) which are attached to annihilation operators. With this identification we can split
up our field ϕI into negative and positive frequency components:

ϕI = ϕ+I + ϕ−I

Since these components are attached to the creation and annihilation operators respectively we can
use the nice fact that they will act on the vacuum via: ϕ+I |0⟩ = 0 and ⟨0|ϕ−I = 0. This allows the easy
manipulation of terms of the form ⟨0|T{ϕI(x1)ϕI(x2) · · · ϕI(xn)} |0⟩. For example in the case of n = 2
and with x0 > y0, we have that:

T{ϕI(x)ϕI(y)} = ϕ+I (x)ϕ
+
I (y) + ϕ+I (x)ϕ

−
I (y) + ϕ−I (x)ϕ

+
I (y) + ϕ−I (x)ϕ

−
I (y)

= ϕ+I (x)ϕ
+
I (y) +

(
ϕ−I (y)ϕ

+
I (x) +

[
ϕ+I (x), ϕ

−
I (y)

])
+ ϕ+I (x)ϕ

+
I (y) + ϕ+I (x)ϕ

+
I (y)

= N{ϕI(x)ϕI(y)}+
[
ϕ+I (x), ϕ

−
I (y)

]
Where we have defined the Normal ordering operator8, which places all the negative frequency terms
on the left and all the positive frequency terms on the right, ensuring that these terms vanish when
places within a ⟨0| · · · |0⟩.

• We can then generalize this to the case where we don’t know if x0 > y0 or x0 < y0, by defining a
contraction of two fields as:

ϕI(x)ϕI(y) =

{[
ϕ+I (x), ϕ

−
I (y)

]
x0 > y0[

ϕ+I (y), ϕ
−
I (x)

]
x0 < y0

(7.9)

8Often the notation : ϕI(x)ϕI(y) : is used to denote this also.
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What is great about this quantity, is that it is exactly the same as the Feynman propagator we defined
in 2.18 (when we place it between ⟨0| · · · |0⟩).

• We can now generalize this statement to correlation functions with n > 2:

T{ϕI(x1)ϕI(x2) · · · ϕI(xn)} = N{ϕI(x1)ϕI(x2) · · · ϕI(xn)}+ all possible contractions (7.10)

This is known as Wick’s theorem. Often the contractions are included in the argument of the normal
ordering operator, which makes no difference as they are functions not operators and thus N{f} = f .
To see what we mean by all possible contractions we will write down the n = 4 case:

T{ϕ1ϕ2ϕ3ϕ4} = N
{
ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4

+ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4

+ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4
}
. (7.11)

When we contract two fields that are not beside each other we still get a Feynman propagator as it

is just a c-number, meaning N{ϕ1ϕ2ϕ3ϕ4} = DF (x1 − x3)N{ϕ2ϕ4}. This means that in 7.11 the only
terms that do not vanish are the last four. This makes clear what we mean by all possible contractions.
the final result is then:

⟨0|T{ϕ1ϕ2ϕ3ϕ4}|0⟩ = DF (x1 − x2)DF (x3 − x4)

+DF (x1 − x3)DF (x2 − x4)

+DF (x1 − x4)DF (x2 − x3). (7.12)

7.5 Feynman Diagrams

• When we go to higher order calculations, it can get hard to keep track of all possible contractions. To
help with this we can draw specific diagrams that help us visualize each of the individual contractions.
These are known as Feynman diagrams and the idea is as follows. If we have for example the propagator
above, ⟨0|T{ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)}|0⟩, then we can represent each point xi as a point in space,
and each propagator, DF (xi − xj) as a line joining xi to xj . This means 7.12 can be written as:

⟨0|T{ϕ1ϕ2ϕ3ϕ4}|0⟩ =

x1 x2

x3 x4

+

x1 x2

x3 x4

+

x1 x2

x3 x4

• We can ascribe to each of these diagrams a physical interpretation, in that we can say each diagram
represents 4 spacetime points where particles are created then propagate to swap with one other particle
and annihilating. But this is not physically happening, this is just a tool for calculation.

7.6 Interacting Feynman Diagrams

• Things also become more complicated when we not only add more points to correlate the fields at, but
make it so that more then one fields are at the same point in space-time. Let us look at this case for
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our interacting correlation function, which we showed takes the form of 7.8, for now we will just discuss
the numerator. We can expand the exponential 7.8 up to linear order in the interaction parameter λ:

⟨0|T
{
ϕ(x)ϕ(y)exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|0⟩ = ⟨0|T

{
ϕ(x)ϕ(y)− iϕ(x)ϕ(y)

∫ t

−t
dt′HI(t

′)

}
|0⟩+O(λ2)

The first term in the approximation is just DF (x−y), where as for the second term we can use its
definition in 7.2 to expand, before we attempt to apply Wicks theorem:

−i ⟨0|T
{
ϕ(x)ϕ(y)

∫ t

−t
dt′HI(t

′)

}
|0⟩ = − iλ

4!
⟨0|T

{
ϕ(x)ϕ(y)

∫ t

−t
dt

∫
d3zϕ4(z)

}
|0⟩

• We then we need to figure out all the ways of contracting these terms. There are two case of this,

we could have that ϕ(x) and ϕ(y) are contracted, then there are 1
2 ×

(
4
2

)
= 3 ways of choosing the

remaining 2 contractions (the factor of a half is here as it does not matter what order we picked these
contractions in). The other case is that ϕ(x) is contracted with the any of the 4 ϕ(z)’s (of which there

are 4 possibilities), which leaves 1
2 ×

(
4
2

)
= 3 contractions of ϕ(y) with the remaining 3 ϕ(z)’s. Thus

there are 3 × 4 = 12 possibilities for this second case. With this we can write these contractions in
terms of propagators using Wick’s theorem 7.10:

⟨0|T
{
ϕ(x)ϕ(y)exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|0⟩

=DF (x− y) + 3

(
− iλ
4!

)
DF (x− y)

∫
d4zDF (z − z)DF (z − z)

+ 12

(
− iλ
4!

)∫
d4zDF (x− z)DF (y − z)DF (z − z) +O(λ2)

• We can then draw the Feynman diagram for these contractions, which will look like:

(
x y

)
+3

 x y z

+12


x z y

 (7.13)

• From this example we can get the general picture of how we can construct diagrams for every possible
calculation. First we split it up into the terms which correspond to different diagrams, then from these
diagrams we calculate an over all factor that multiplies these terms based on how many different ways
we can construct the same diagram.

In general given a diagram with v vertices (this means v integrals, so the vth term in the Taylor series),
the overall factor in front of the diagram will take the form:

C

v!

(
−iλ
4!

)v
=

1

S
(7.14)

Where here the v! comes from the fact that this is the vth term in the Taylor series and the
(−iλ

4!

)v
comes from the fact that each of the v integrals comes with a factor of

(−iλ
4!

)
. The remaining factor of

C is to do with how many different combinations of contractions are possible. For example the factors
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of 1
2 ×
(
4
2

)
= 3 and 1

2 ×
(
4
2

)
×4 = 12 that we had in the above examples are examples of this factor of

C. One nice thing from this is we can notice that generally the factor of C will contain a factor of 4!

for each vertex/integral (this is hidden inside the choose function

(
4
2

)
above). This will always cancel

the (4!)v we have in the numerator, so we don’t have to worry about that term. The same will happen
for the v! as C will have to involve a permutation of the vertices. This means we are left with a smaller
part of C. Another way of thinking about this is to involve a symmetry factor S, which is related to
this left over expression as can be seen in 7.14. Genrally this factor will not be larger then 2.

7.7 Feynman Rules

• We can write down the rules for constructing these diagrams and in turn how to go from the diagrams
to a calculable expression. We formulate these as 4 rules called the Feynman rules:

1. For each propagator: x y = DF (x− y)

2. For each vertex z = (−iλ)
∫
d4z

3. For each external point: x = 1

4. Divide by the symmetry factor.

• We can once again give physical interpretations to these diagrams. Each vertex factor (−iλ) can be
thought as the probability of amplitude for emission, and the integral over all spacetime

∫
d4z tells us

to consider every space-time point where this could occur. This is just the superposition principle.

7.8 Momentum-Space Rules

• We can also discuss these diagrams in momentum space. For this we can make use of the Fourier
expansion of the Feynman propagator DF (x − y) 2.19. This way we assign a 4-momentum to each
propagator, and hence we need an arrow to denote the direction. For now the directions should not
matter as DF (x− y) = DF (y − x), but later we will need to conserve quantities likes fermion number.
As an example if we have single vertex connected to 4 external points:

p1

p4

p2

p2

• Recall that since we are adding a propagator in momentum space (of the form 2.19) for each of these
lines, then this means we get an exponential e−ipiz for each of the momenta pi. This along with the
integral over all of z spacetime, means we can separate the following contribution:∫

d4zeip1ze−ip2ze−ip3ze−ip4z = (2π)4δ(−p1 + p2 + p3 + p4) (7.15)
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Note the sign of p1 is flipped as it is going in the opposite direction. This factor implies the conser-
vation of momentum at each vertex! This motivates us to write down the following Feynman rules in
momentum space:

• We can write down the rules for constructing these diagrams and in turn how to go from the diagrams
to a calculable expression. We formulate these as 4 rules called the Feynman rules:

1. For each propagator:
p

= i
p2−m2+iϵ

2. For each vertex = (−iλ)

3. For each external point: = e−ip·x

4. Impose momentum conservation at each vertex

5. Integrate over all undetermined momentum
∫ d4p

(2π)4

6. Divide by the symmetry factor.

7.8.1 Integration path

• We have glossed over a slight subtlety in the fact that we have simply combined the
∫ t
−t dz

0 with the∫
d3z to make

∫
s4z. But we forgot to consider that in 7.8 we were considering the limit t→ ∞(1− iϵ).

If we look then at the integral we had above 7.15, this now becomes:

lim
t→∞(1−iϵ)

∫ t

−t
dz0

∫
d3zei(p1−p2−p3−p4)z

The exponentials here will now blow up in the limit if their exponent contains any non imaginary
terms (which is the case if t → ∞(1 − iϵ)). The only way to counteract this would to have p0 be the
complex conjugate of z0, so p0 ∝ (1 + iϵ), which seems like a strange condition until we remember we
are working with Feynman propagators! This means we already have p0 ∝ (1 + iϵ) in order to avoid
the poles of the contour integration. So there are actually no dilemmas here it seems.

7.9 Vacuum Diagrams

• We can notice that momentum conservation at every vertex can have have strange consequences for
loops. At a loops we have the same momentum going in and out so the terms will cancel. This is fine
for diagrams with external points, as it just means the loops momentum does not contribute to the
momentum conservation. However this does become an issue for diagrams with no external points (we
call these disconnected diagrams). Here all the momentum cancel out and we are just left with a δ(0).
This seemingly divergent factor can be understood by the following argument:

δ(4(0) =

∫
d4w · e0 =

∫
d3w

∫ t

−t
dw0 = 2t · V

Where V is the volume of space we are considering and t is the time in the limit. Both of these clearly
blow up if we consider all of space and all of time.
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• We can consider the set of all such loop diagrams with no external points:

Vi ∈

 , , · · ·


Each of these diagrams will have a divergent factor of 2tV . It will be the case that a given Feynman
diagram 9, it will be made up of both connected (having endpoints) and disconnected diagrams. See
for example the term with the co-efficient 3 in 7.13. We will for convenience denote the contribution of
the disconnected diagram Vi by Vi. Then we can consider the Feynman diagram with ni copies of the
disconnected diagram Vi along with the single copy of a connected diagram. See the example below: x y

· · ·


Since these diagrams are disconnected they don’t affect each other and we can simply write down their
contribution as the product of the ni Vi divided by ni! to account for the ordering not mattering. This
happens for each of the of the disconnected diagrams indexed by i. These contributions all multiply
by the original connected diagram factor which we can just call A. The value of the diagram is then:

A ·
∏
i

1

ni!
(Vi)

n
i

Looking back at the denominator in 7.8 we can see that this term involves no ϕ(xi) and thus is only
made of disconnected diagrams. Since there is an exponential this quantity will contain Feynman
diagram terms that will have all possible number of ni for each i, hence we can write down the total
contribution as:

⟨0|T
{
exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|0⟩ =

∑
all {ni}

(∏
i

1

ni!
(Vi)

n
i

)

=

(∑
n1

1

n1!
(Vi)

n
2

)
×

(∑
n2

1

n2!
(Vi)

n
2

)
×

(∑
n3

1

n3!
(Vi)

n
3

)
× · · · =

∏
i

(∑
ni

1

ni!
(Vi)

n
i

)
= exp

(∑
i

Vi

)
With the numerator of 7.8 we can recognize that the same thing happens, just there is a connected
diagram in each term. This means the numerator of 7.8 becomes:

⟨0|T
{
ϕI(x)ϕI(y)exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|0⟩ =

∑
(connected)×

∑
all {ni}

(∏
i

1

ni!
(Vi)

n
i

)

=
∑

(connected)× exp

(∑
i

Vi

)
This means that the problem divergent terms that come from the disconnected diagrams cancel in our
actual calculations! We are just left with the connected diagrams:

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ = sum of all diagrams with two external points

9where by Feynman diagram we mean one of the terms in the sum of the calculation of the n-point functions, see the terms
in the brackets of 7.13
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This can be generalized to n−point correlator by replacing the RHS with all diagrams with n external
points.

• As a last point we can compare 7.7 and 7.8 (since they have the same numerator and denominator) to
write:

lim
t→∞(1−iϵ)

⟨0|T
{
ϕI(x)ϕI(y)exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|0⟩

= ⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ lim
t→∞(1−iϵ)

(
e−2iE0t| ⟨0|Ω⟩ |2

)
But we have just shown that the LHS is ∝ exp (

∑
i Vi) so we can compare the time dependent arts of

this expression to:

exp

(∑
i

Vi

)
∼ e−2iE0t

Recalling that each factor of Vi contains a factor of (2π)4δ(4)(0) = 2T · V we get an expression for the
energy density of the vacuum:

E0

V
∼ i

 + + · · ·


(2π)(4)δ(4)(0)
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8 Cross Section & S Matrix

• The calculation we would like to perform is the differential cross section, that is the derivative of
the cross section σ with respect to the solid angle Ω, dσ

dΩ . This is a useful quantity as it is easily
experimentally observed. In a particle collider, electrons and positrons are prepared in batches of
length lA and lB and densities ρA and ρB respectively. When the two batches collide if the over
lapping area of the head on collision is A, then the cross section is given by:

σ ≡ Number of events

ρAρBlAlBA
(8.1)

8.1 The S Matrix

• The general picture for calculating the cross section is to consider a wave packet of initial states and
evolve them for a large time using e−iHt. We then overlap the result with a set of final wave-packets
representing the desired final state particles |ϕ⟩. This gives us the probability amplitude for the
production of a given final state, which we will be able to relate to the cross section.

We can write down final wave packets in the following form:

|ϕ⟩ =
∫

d3k

(2π)3
1√
2Ek

ϕ(k) |k⟩

Where ϕ(k) is the Fourier transform of the spatial wavefunction. The factor of 1/
√
2Ek is to revert

back to conventional normalization where we had introduced it originally to have Lorentz invariance.
This means:

⟨ϕ|ϕ⟩ = 1 ⇐=

∫
d3k

(2π)3
|ϕ(k)|2 = 1 (8.2)

Due to the fact that |k⟩ =
√
2Eka

†
k |0⟩. Given this normalization the probability of the initial state of

two particles A and B evolving into a set of final states |ϕ1ϕ2 · ··⟩,is:

P = | ⟨ϕ1ϕ2 · ··︸ ︷︷ ︸
future

|ϕAϕB︸ ︷︷ ︸
past

⟩ |2

• Our initial particle states will be wave-packets, Constructed so that they do not overlap spatially; but
we will be considering the limit in which they become centered around a single momenta. |ϕAϕB⟩ will
be a superposition of such packets. The general picture for this interaction is:

- 62 -



Quantum Field Theory I 8 Cross Section & S Matrix

Figure 1: Incident wavepackets are uniformly distributed in impact parameter b.

• In general we will be considering co-linear interactions (so b = 0). To account for this fact we will
separate the contribution of the momenta of ϕB along the direction of b, this amounts to adding in
a factor of e−ib·kB to the integral expression (as this is the form of the solutions to the Klein Gordon
equation) which then takes the form:

|ϕAϕB⟩ =
∫

d3kA
(2π)3

∫
d3kB
(2π)3

ϕAϕB

2
√
EkAEkB

e−ib·kB |kAkB⟩ (8.3)

For the out states it is preferable to consider specific momenta pi, so the main object of interest we
will need to compute is in ⟨p1p2 · · · |kAkB⟩out. But recall that we defined our out states to be in the
far future and out in states in the far past, so we must include the limits in this:

in ⟨p1p2 · · · |kAkB⟩out = lim
t→∞ in ⟨p1p2 · ··︸ ︷︷ ︸

t

|kAkB︸ ︷︷ ︸
−t

⟩ out

= lim
t→∞ in ⟨p1p2 · · · |e−iH(2t)|kAkB⟩out

Where in the last line we have added the time evolution operator so that both states are at the same
common reference time for this limit. This then brings us to define the S matrix as:

in ⟨p1p2 · · · |kAkB⟩out = ⟨p1p2 · · · |S|kAkB⟩ (8.4)

• It is clear that if there no iteration between the particles then the Ŝ matrix is just the identity. This
motivates us to isolate the interacting part of the Ŝ matrix by defining the T̂ matrix as:

Ŝ = 1+ iT̂

8.1.1 Invariant Matrix Element

• There are more things we know S should satisfy. It should conserve momenta at each collision, meaning
T should contain a delta function δ(4)(kA + kB −

∑
f pf ). What is left over as part of T will be known
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as the invariant (as it must be Lorentz invariant) matrix element and is denoted with a M. Formally
this is defined as:

⟨p1p2 · · · |iT̂ |kAkB⟩ = i(2π)4δ(4)
(
kA + kB −

∑
pf

)
M(kA, kB → {pf}) (8.5)

Where M depends on the initial and final states as would be expected.

8.2 2 Particle Scattering

• Our next step will be to see how the cross section σ depends on M. We will do this infinitesimally, so
we start with the probability of the initial state of particles A and B scattering into a final state of n
particles who’s momenta lie in a small region d3p1d

3p2 · · · d3pn of the phase space. This probability is
given by:

P(AB → 1 2 . . . n) =

∏
f

d3pf
(2π)3

1

2Ef

 |out ⟨p1 · · · pn|ϕAϕB⟩in |
2 (8.6)

With this the total number of scattering events N will be the sum of this probability over all incident
particles, i.e. all the different particles in figure 1 with different impact parameters. In the continuity
limit when we talk about particle densities this becomes an integral wrt the impact parameter b:

N =
∑

all incident
particles i

Pi =
∫
d2bnBP(b) (8.7)

Where nB is the number density. of B particles. We will assume that this density is constant and take
it out of the integral. This then nicely leads us to the cross section which is defined in 8.1, (where
nB = ρBlB and AρAlA = AnA = NA, where NA is the number of A partiles which is just 1 as per our
setup.):

σ =
N

ρAρBlAlBA
=

N

nBNA
=
N

nB
=

∫
d2bP(b)

We can then combine this expression with 8.6 and 8.3 to get the infinitesimal cross section :

dσ =

∏
f

d3pf
(2π)3

1

2Ef

∫ d2b

∫
d3kA
(2π)3

∫
d3kB
(2π)3

∫
d3k′A
(2π)3

∫
d3k′B
(2π)3

ϕA(kA)ϕB(kB)

2
√
EkAEkB

ϕ∗A(k
′
A)ϕ

∗
B(k

′
B)

2
√
Ek′

A
Ek′

B

×e−ib·(kB−k′
B)
(
out ⟨{pf}|kAkB⟩ in

) (
out ⟨{pf}|k′

Ak
′
B⟩ in

)∗
(8.8)

Where we have integrals over k and k′ as those terms are squared in 8.6. Carrying out he b integral
will give us the delta function δ(2)(k⊥

B − k
′⊥
B ). We can get more delta functions by using the definition

of the invariant matrix element defined in 8.5, so we can write the brakets in dσ as:(
out ⟨{pf}|kAkB⟩ in

)
= i(2π)4δ(4)

(
kA + kB −

∑
pf

)
M(kA,kB → {pf})(

out ⟨{pf}|k′
Ak

′
B⟩ in

)∗
= −i(2π)4δ(4)

(
k′
A + k′

B −
∑

pf

)
M(k′

A,k
′
B → {pf})

The two delta functions in δ(2)(k⊥
B − k

′⊥
B ) and the 4 in

(
out ⟨{pf}|k′

Ak
′
B⟩ in

)∗
allow us to perform all 6

integrals over k′
A and k′

B. The only non-trivial one of these is the 0th component, which we need to
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explicitly calculate, we do this with the help of the z component of k, which point along the direction
of collision: ∫

dk′zAdk
′z
B δ
(
k′zA + k′zA −

∑
pzf

)
δ(E′

A + E′
B −

∑
Ef )

=

∫
dk′zAδ(

√
k′2A +m2

A +
√
k′2B +m2

B −
∑

Ef )

∣∣∣∣
k′zB =

∑
pf−k′zA

=
1

| k
′z
A
EA

− k′zB
EB

|
=

1

|vA − vB|

Where we have used the property of the delta function that:

δ(f(x)) =
1

|f ′(x0)|
δ(x− x0)

=⇒ δ(EA(k) + EB(k)−
∑

Ef ) =
δ(k − k0)

|dEA/dk + dEB/dk|

Where k0 is the k such that E′
A(k) + E′

B(k) =
∑
Ef . All of this allows us to write 8.8 as:

dσ =

∏
f

d3pf
(2π)3

1

2Ef

 |M(k′
A,k

′
B → {pf})|2

2EA2EB|vA − vB|

∫
d3kA
(2π)3

∫
d3kB
(2π)3

× |ϕA(kA)|2|ϕB(kB)|2(2π)4δ(4)
(
kA + kB −

∑
pf

)
• The wave-packets that we created as part of the in states, ϕA(kA) and ϕB(kB) can be made as resolved
as our detectors can be, meaning our detectors cannot resolve the spread of the wave-packets only their
central value. We can thus to good approximation replace kA and kB by pA and pB in the integral
and pull the delta function out. The remaining integrals are just the normalization of the wave packets
that we had in 8.2, so these go to one and we are left with the following which does not depend on the
wave-packets constructed:

dσ =

∏
f

d3pf
(2π)3

1

2Ef

 |M(pA,pB → {pf})|2

2EA2EB|vA − vB|
(2π)4δ(4)

(
pA + pB −

∑
pf

)
(8.9)

To get to the total cross section we will have to integrate this expression. This amounts to integrat-
ing over the phase space of all possible output momentum subject to the constraint of momentum
conservation. We will often concisely write this as:∫

dΠn =

∫ ∏
f

d3pf
(2π)32Ef

 (2π)4δ(4)(P −
∑
f

pf ) (8.10)

Where P is the total momenta (P = pA + pB in the two particle initial state).

8.2.1 2 Final Particles

• In the case of two final particles, one finds 10∫
Π2 =

1

8π

(
2|p̃|
ECM

)∫
dΩ

4π
(8.11)

10For this calculation see pg 10 of my Standard model notes here
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Where p̃ is the value of p such that EA + EB = ECM. The notable limit is the relativistic one
where we send the masses of the scattering particles to 0 (they are small compared to their energy).
This means if P = (ECM, 0) =⇒ pA = (EA,p) & pB = (EB,−p), then in the relativistic limit
E >> mA,mB =⇒ ECM = EA + EB ≈ |p̃| + |p̃| = 2|p̃|. This makes the factor in brackets of 8.11
unity, which allows us to write 8.8 as:

dσ

dΩ
=

1

2EA2EB|vA − vB|
1

32π2
|M(pA,pB → p1,p2)|2

We can then impose that in the massless limit, he particles will move at approximately vA = −vB =
1 =⇒ |vA − vB| = 1 as well as EA = EB = 1

2ECM, so we finally have the well know result:

dσ

dΩ
=

|M|2

64π2E2
CM

(8.12)

8.3 Decay Rates

• Decay rate is the constant that describes how likely particles are to decay into other particles. The
probability for a particle A to decay at a time t is given by P (t) ∝ e−ΓAt. We can think of decaying
particles as a scattering process where the single original particle A becomes n final particles, A →
1 + · · ·n. With this consideration we can derive an equation for the differential decay dΓ in a similar
manner to how we calculated the differential cross section 8.8. In this case we only consider a single
initial state, so only one wave-packet is considered in 8.3. We also can do this in the rest frame of the
decaying particle where the particle energy EA is just EA = mA. Following this procedure results in:

dΓA =
1

2mA
|M(A→ {pf})|2dΠn

8.4 S Matrix From Feynman Diagrams

• We saw that in equation like 7.6 we could express the ground state |Ω⟩ in the interacting picture in
terms of the ground state of the free theory |0⟩. We would like to do the same thing for our momenta
|kAkB⟩. Taking inspiration from 7.6 we can guess that this will be something like:

|kAkB⟩ ∝ lim
t→∞(1−iϵ)

e−iHt |kAkB⟩0 (8.13)

In the previous case we had that the proportionality factor (which contained all vacuum diagrams)
canceled out in the final formula leaving us with just the sum of all diagrams with two external points.
We will posit for simplicity that the same happens for this case and that only a subset of the Feynman
diagrams will actually contribute to our calculation. It turns out, that through a proper proof which
we will not present here, that the only type of diagrams that contribute are called Connected &
Amputated. We will explain what these mean soon.

• If we had an expression like 8.13 then we could use it to write the LHS of the Ŝ matrix 8.4 as the
following:

in ⟨p1p2|kAkB⟩out = lim
t→∞(1−iϵ)

0 ⟨p1p2| e−iH(2t) |kAkB⟩0

∝ lim
t→∞(1−iϵ)

0 ⟨p1p2|T
{
exp

(
−i
∫ t

−t
dt′HI(t

′)

)}
|kAkB⟩0 (8.14)
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Where in the last step we have used Dyson’s formula 7.4. We can examine the expansion of this
exponential in powers of the interaction parameter λ. At first order this is just the identity which is
part of the 1 of Ŝ = 1 + iT̂ . Thus this not part of the interaction and does not contribute to the
matrix element M, thus we can ignore these in our calculation of M. This term is just the particles
translating to the final particles, which can be seen from the Feynman diagrams which take the form:

A B

1 2

+

A B

1 2

• We would like to proceed in the same manner as we did in the calculation of the expressions for the
n-point correlator. The first step is as usual, we normal order any of the terms we have left, leaving us
with some contractions. However, in doing so we quickly run into an issue. Since before our expressions
like 7.6 involved the vacuum |0⟩ we could leverage the fact that the when we split our field into positive
and negative frequency components, that they satisfied ϕ+I |0⟩ = 0 and ⟨0|ϕ−I = 0. But now since we
the kets we are acting on are momentum kets and not the vacuum, these relations no-longer hold. In
fact they now do the following:

ϕ+I (x) |p⟩ =
∫

d3k

(2π)3
1√
2Ek

ake
−ik·x√2Epa

†
p |0⟩

=

∫
d3k

(2π)3
1√
2Ek

e−ik·x
√
2Epδ(k− p) |0⟩

= e−ip·x |0⟩

Note that since our states are Normal ordered initially, all the ϕ+’s are on the right and all the ϕ− are
on the left so we get a term like the one above for each way of contracting ϕ’s with either in going or
outgoing states.

• Having noticed this is the case, we can see that if we have a product of fields ϕI(x), then once we use
one of them to act on the state |p⟩, then the left over normal ordered fields act on the |0⟩ and from then
on only the full contractions are kept as usual. With this we are motivated to define the contraction
of a field ϕ with the momentum ket |p⟩ via:

ϕI(x)|p⟩ = e−ip·x |0⟩ , ⟨p|ϕI(x) = ⟨0| eip·x (8.15)

So before when we had normal ordered terms we could ignore them as they acted on the vacuum |0⟩
and vanished. But now this is not the case, so in expressions like the expansion of 7.11, all the terms
will contribute not just the fully contracted ones. In fact 7.11 is exactly what we would have in the
second term in our expansion of the exponential 8.14. Hence this is a good thing to examine closer as
it will contain the first interaction terms.

In 7.11 there are three types of terms, one term with no contractions ϕϕϕϕ, 7 terms with one contraction

ϕϕϕϕ, and 3 terms with 2 contractions ϕϕϕϕ.

• Case 1: Before only the ϕϕϕϕ terms were important, but now we can actually argue that we should
ignore these terms. Since all the ϕ’s are contracted, it means there are no ϕ′s left over to contract
with any of the momentum kets |p⟩. This essentially means these terms are also part of the 1 in the
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definition of Ŝ, and do not contribute to M. The Feynman diagram for this term is:

×


A B

1 2

+

A B

1 2


• Case 2: For the ϕϕϕϕ terms, the two uncontracted ϕ’s are normal ordered, so in terms of creation
and annihilation operators we know they will be proportional to a†a† + 2a†a + aa. We then use of
these ϕ to contract with either the initial momentum ket or a final momentum ket. Either way results
in us getting an exponential as well as |0⟩ or ⟨0|. We can then see that only the middle term in
a†a† + 2a†a+ aa will be non-vanishing as the other terms will annihilate the vacuum bra/kets. What
we are left to do is come up with a way of drawing this process in our Feynman diagrams. Since we
have that one of the ϕ’s is contracted with both the final and initial kets, it makes sense to define their
contraction as an external line:

ϕI(x)|p⟩ = p
,= e−ip·x |0⟩ ⟨p|ϕI(x) = p

= ⟨0| eip·x

With this we have 4 different types of diagrams for the ϕϕϕϕ terms:

A B

1 2

+

A B

1 2

+

A B

1 2

+

A B

1 2

From these diagrams we can gather that the first two diagrams are also part of the trivial contribution
to the Ŝ matrix as they involve initial and final states that are identical. From this example we can
gather that the only diagrams that contribute to the interaction are fully connected diagrams. This is
what we meant earlier when we mentioned we will only care about connected diagrams.

• Case 3: Finaly for the ϕϕϕϕ case we have to contract each of the ϕ’s with an incoming or outgoing
momentum. There are 4! ways of doing this. This Feynman is the exact one we had in 7.15 and the
diagram looks like:

1 2

A B

The contribution to the 8.14 will then take the form of 7.15 i.e. −iλ(2π)4δ(−p1 + p2 + p3 + p4). This
is of the same form of 8.5. So we can read off that |M|2 = λ2. Plugging into 8.12 we get our first
contribution to the mass frame:
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dσ

dΩ
=

λ2

64π2E2
CM

=⇒ σ =
λ2

32πE2
CM

As we have no angular dependence.

8.4.1 Amputations

• We seemed to have ignored the last two diagrams in case 2 but it turn out that we also ignore these
diagrams. There are some ”physical” reasons for doing this though I have found none of them convinc-
ing. The main reason we have to ignore these terms is because when we actually go to evaluate their
contribution we find that it blows up when we impose momentum conservation at each point. To see
what me mean consider the following Feynman diagram along with its contribution according to our
Feynamn momentum rules (see section 7.8):

p′

p1

pA

p2

pB

=
1

2

∫
d4p′

(2π)4
i

p′2 −m2

∫
d4k

(2π)4
i

k2 −m2
(−iλ)2(2π)8δ(4)(pA + p′ − p1 − p2)δ

(4)(pB − p′)

• This integral is a big problem as just evaluating the second delta function results in the first fraction
i

p2B−m2 , but since pB is the momentum of an external particle (which must have mass m), this term

blows up! This means that any diagram involving a loop like the one above will contain a divergent
factor. Hence we must ignore them! The diagrams with out these loops are called the amputated
diagrams.

8.5 Feynman Rules for Fermions

• We would like to extends our discussion in the previous few chapters to fermions. The main thing we
need to figure out is what contractions of fermions look like and what rules they obey. We can recall
that at the end of our discussion of Dirac fermions we defined the time ordering operator for fermions
with an extra minus sign 4.46, to basically account for the fact that fermions pick up a minus sign
when swapped. This means that when we go to define the normal ordering of fermions, we have to
pick up an extra minus sign for each time we swap two fermions. There also is a bit of ambiguity in
the ordering, but the expressions are all equivalent. As an example consider the following:

N(apaqa
†
k) = (−1)2a†kapaq = (−1)3a†kaqap

• To define contractions we can simply apply the same procedure as we did with the scalar field, except
wherever we had a commutator we now replace it with an anti-commutator. For example for the time
ordered product of two fermion fields we have that:

T{ψ(x)ψ̄(y)} = N [ψ(x)ψ̄(y)] + ψ(x)ψ̄(y)

Where we have used 7.9 as inspiration to define:

ψ(x)ψ̄(y) =

{ {
ψ+(x), ψ̄−(y)

}
x0 > y0

−
{
ψ̄+(y), ψ−(x)

}
x0 < y0

}
= SF (x− y)
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Where ψ+ and ψ− are the negative and positive frequency components of the fields and SF (x− y) is
the Dirac Feynman operator defined in 4.46. With this definition through the anti-commutator we can

see that ψ(x)ψ(y) = 0 and ψ̄(x)ψ̄(y) = 0. With these definitions Wick’s theorem (see section7.4) take
pretty much the same form. The only thing we need to be wary of is that contractions of fermions that
are not beside each other will pick up a minus sign as we need to make them be beside each other for
the contraction.

• We will also need to define how the fermion fields contract with the ingoing and outgoing momenta.
To do this we follow the exact same approach we took in defining 8.15. That is we pick a field ψ and
use it to act on the momentum state. Using our definition of ψ from 4.37:

ψ(x)|p, s⟩ ≡ ψ+(x) |p, s⟩ =
∑
r=1,2

∫
d3p′

(2π)3
1√
2Ep′

(
brp′ur(p′)e−ip

′·x
)√

2Epb
s†
p |0⟩

= e−ip·xus(p) |0⟩ (8.16)

Where we have used the anti-commutation relations 4.43. The contraction of ψ̄ with a momentum

ket can be defined in the same way resulting in ψ̄(x)|p, s⟩ = eip·xv̄s(p) |0⟩. There is a caveat to this
last definition in that it only holds if the ket ψ̄ acts on is a anti-fermion as it needs to contain the
creation operator cr†p . The opposite holds for contractions with the outgoing states. ψ must contract
with outgoing anti-fermions and ψ̄ with outgoing fermions.

• Often the exponentials of these contractions are dropped as all they lead to is momentum conservation
at each vertex of the diagram. The last rule we forgot to mention is that at each vertex we assign a
factor of −ig, where g is the coupling constant of the given theory. this just comes about as this factor
appears where ever we have a 4−current, i.e. wherever there is a vertex.

• We will summarize all the rules as follows, where here the dashed lines indicate the irreverent parts of
the diagrams:

– Fermion Propagator:

ψ(x)ψ̄(y) = =
i(γµpµ +m)

p2 −m2 + iϵ

– Vertices:

= −ig

– External Fermions:

ψ(x)|p, s⟩ = us(p) = ⟨p, s|ψ(x) = vs(p) =

ψ̄(x)|p, s⟩ = v̄s(p) = ⟨p, s|ψ̄(x) = ūs(p) =
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9 QED Interactions

• We discussed at length in section 6 how to quantize the Electromagnetic field. We now would like to
discuss interactions of the electromagnetic field, particularly when we couple it to the spin half fermion
fields ψ (i.e. electrons).

9.1 Coupling to Fermions

• We saw in chapter 4 that there is a 4-current associated with the fermionic fields 4.45 given by jµ =
ψ̄γµψ. In our study of electromagnetism we came across Maxwell’s equations for matter by including
an Aµj

µ term in the Lagrangian. So it is natural to include the following interaction term to our
Hamiltonian:

Hint =

∫
d3xψ̄γµψAµ

There is actually another argument for adding such a term to our Lagrangian. We would like (for
reasons that I need to better explain at some point 11) for our Lagrangian to be locally U(1) gauge
invariant. This means that if we transform our fields under the action of the U(1) group then they
transform via ψ → eiα(x)ψ, where α depending on x is what makes this a local symmetry. If we look
at the Lagrangian for the spin 1/2 fields which can be seen in the action 4.15, L = ψ̄(iγµ∂µ −m)ψ,
we can see that the term that poses a threat to local U(1) gauge invariance is the derivative term as
e−iα(x)ψ̄∂µ

(
eiα(x)ψ

)
̸= ψ̄∂µψ. This can be fixed in an elegant way. If we replace the derivative operator

by what is known as the gauge covariant derivative12 :

Dµ = ∂µ + ieAµ

Where Aµ is a four vector that conveniently transforms by Aµ → Aµ − 1
e∂µα. (which we know can

be true for the electromagnetic 4-vector as the physics is the same under such transformations.) With
this we can see that:

Dµψ → (∂µ + ieAµ − i∂µα) e
iα(x)ψ

= eiα(x) (∂µ + ieAµ)ψ

Which is exactly what we need for the term ψ̄Dµψ to be gauge invariant. With this we promote our
Dirac Lagrangian to:

L = ψ̄(iγµDµ −m)ψ = ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ

Which is exactly the addition of the interaction term as promised! To fully incorporate Aµ into this
action we need to add some kinetic terms. Since we are pretty sure now that this is the electromagnetic
4-vector, all we need to do is add the Maxwell free field Lagrangian 6.1. This gives us finally the full
Lagrangian for QED:

LQED = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ

11See a good discussion of thishere.
12The factor of e here is placed here a priori as it turns into the coupling constant later on
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9.2 Feynman Rules for QED

• We can use our knowledge of Feynman rules developed in the previous few chapters to write down the
Feynman rules for QED. We make use of

We can gather that this will go the same way as the other rules. We can define the contraction of an
Aµ field with itself as the following:

Aµ(x)Aν(y) =

{ [
A+
µ (x), A

−
ν (y)

]
x0 > y0

−
[
A+
ν (y), A

−
µ (x)

]
x0 < y0

}
= DF

µν(x− y)

Where DF
µν(x− y) is the QED propagator defined in 6.17. The contractions of the Aµ fields with the

ingoing and outgoing momenta can be found in the exact same way as we found the external fermions
is the last chapter, but instead of the spinors us and vs we get the polarization vectors ϵr(p) that
make up Am in 6.14. We actually extend these polarization vectors to become polarization 4 vectors

by giving them an ϵ0 = 0 component. The contractions then give us Aµ|p⟩ = ϵµ(p) and ⟨p|Aµ = ϵ∗µ(p)

• Since we defined the Feynman rules for fermions at the end of the last chapter all that is left to do is
write down the rules for the different contractions of the A fields. There is also one small change to
the vertices in that along with the factor of −ie, they also have a γµ. This then also means that the
other rules will contain some indices for contraction.

• All together the rules are (ignoring momentum conservation):

– Fermion Propagator:

ψ(x)ψ̄(y) = =
i(γµpµ +m)

p2 −m2 + iϵ

– Photon Propagator:

Aµ(x)Aν(y) = =
−iηµν
p2 + iϵ

– Vertices:

= −ieγµ

– External Fermions:

ψ(x)|p, s⟩ = us(p) = ⟨p, s|ψ(x) = vs(p) =

ψ̄(x)|p, s⟩ = v̄s(p) = ⟨p, s|ψ̄(x) = ūs(p) =

– External Photons:

Aµ|p⟩ = ϵµ(p) = ⟨p|Aµ = ϵ∗µ(p) =
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9.3 Trace Technology

Through out many calculations in QED the traces of various combinations of gamma matrices defined in
section 4.2. We proved in section 4.2 that the gamma matrices are trace-less. This can be further extended
to all odd combinations of gamma matrices, by using γ5 instead of γµ in that proof, as {γ5, γµ} = 0 13.
Hence:

tr(γν · · · γµ︸ ︷︷ ︸
n=odd

) = 0

For the even number of gamma matrices we can use their definition 4.1 to manipulate and calculate their
traces. For example:

tr(γµγν) = tr(2ηµν · 1− γνγµ) = 8ηµν − tr(γµγν)

=⇒ tr(γµγν) = 4ηµν

Where we have to remember that the trace is over the spinor indices not the µ, ν indices. Similarly one can
show that:

tr (γµγνγργσ) = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ) .

13This can be shown from the alternate definition of γ5 as γ5 = − i
4!
ϵµνρσγµγνγργs.
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