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”If you can’t explain it simply enough you don’t understand it well enough”

- Albert Einstein
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Standard Model 1 The Quark Model

1 The Quark Model

• Long ago it was realized that the proton and the neutron have very similar masses and thus in regions
where the Electromagnetic is weak compared to the strong force, there is an approximate symmetry
between the neutron. With this, it was postulated that these two particles were two states of the same
particle, the nucleon. With this in analogous to spin states, we can write the proton as |p⟩ = (1, 0)T

and the neutron as |n⟩ = (0, 1)T . This lead to the idea of Isospin, as the proton and the neutron can be
considered to form an isospin doublet, with total Isospin 1/2 and a third component of I3 = ±1/2. Just
like spin, our Lagrangian (if we ignore the electromagnetic terms) should be invariant under unitary
transformations of these states (which will be ∈ U(2)), meaning there is a conserved charge associate
with this transformation. We can do this exact same procedure for the up and down quarks. The
strong force treats all the quarks equally, and seeing as the up and down quark have approximately
the same masses, we can treat them as spin states just like the nucleon. In this case the conserved
quantity associated with this symmetry is known as flavor.

1.1 Isospin

• U(2) has 4 degrees of freedom, and thus 4 generators, one of these can be chosen to be a scaling
by a phase factor of the identity, eiθ1, since overall phase factors of U(1) do not change our states,
this can be ignored, leaving us with the 3 Pauli matrices σi, which are the generators of SU(2), the
main symmetry group here. From this we can proceed in the exact same manner as we do with spin,
recognizing that these matrices form a non-Abelian Lie algebra based on their commutators, where we
can define raising and lowering operators, to enable us to write down states analogous to |lm⟩ for spin.
This quantity that is like spin is called Isospin. This is 3-vector and is defined as:

T =
1

2
σ

• The components obey the following commutations relations:

[Ti, Tj ] = iϵijkTk

Where we have sum of the index k. The measurable quantity from this system is the total isospin,
T2 = T 2

1 + T 2
2 + T 2

3 . We will label states by their total isospin and the third component of isospin I3,
i.e. ϕ(I, I3). The up quark is then |u⟩ = ϕ(12 ,

1
2) and the down quark is |d⟩ = ϕ(12 ,−

1
2).

1.2 Anti-quark Doublet

• The above treatment of up and down quarks is called a quark doublet, which we write as:

q =

(
u
d

)
We would like to have the same treatment of anti-quarks. We know that the complex conjugate of
any quark will give us the anti-quark (eg. u∗ = ū), but we don’t want to write down something like
q̄ = (ū, d̄)T as then this will transform via U∗ instead of U and will not follow the same symmetries.
Instead we should find some combination that does transform via U . We write this as q̄ = S(ū, d̄)T

and then impose that SU∗ = US. Solving this equation results in the matrix S =

(
0 −1
1 0

)
. Meaning

the quark anti-state can be written as:

q̄ =

(
−d̄
ū

)

- 4 -



Standard Model 1 The Quark Model

Note that this ordering means d̄ has I3 =
1
2 and ū has I3 = −1

2 .

1.3 Mesons

• Mesons are bound states of a quark and anti-quark pair, since quarks are spin half, this makes mesons
bosons. Since Mesons are comprised of two quarks, we can think of adding their Isospin in exactly the
same way we add the spin of two particles together. Since the quarks have isospin 1

2 , this will create
the familiar 1

2 ⊗ 1
2 = 1 ⊕ 0. Meaning there will be four possible states, a triplet with I3 = 1 and a

singlet with I3 = 0. These state correspond to meson particles! Each state will correspond to more
then one particle as we are not considering different combinations of spins (which affect the mass!).
These particles are:

ϕ(1, 1) = −|ud̄⟩ =|π+⟩, |ρ+⟩

ϕ(1, 0) =
1√
2

(
|uū⟩+ |dd̄⟩

)
=|π0⟩, |ρ0⟩

ϕ(1,−1) = |dū⟩ =|π−⟩, |ρ−⟩

ϕ(0, 0) =
1√
2

(
|uū⟩ − |dd̄⟩

)
=|η⟩, |ω⟩

1.4 SU(3) Flavour

• The above described SU(2) symmetry is almost exact as the up and down quarks have almost them
same mass. What we can also do is consider extending this symmetry to the strange quark. This
makes it a SU(3) symmetry, as the quark doublet now becomes a quark triplet q = (u, d, s)T , for which
we will need a new basis of generators. The standard choice of generators are the Gell Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , u↔ d

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , u↔ s

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , d↔ s

λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 , equal treatment of u,d

• This particular choice is normalized such that tr(λiλj) = 2δij . With this we can define the SU(3)
Isospin in a similar manner to SU(2) by identifying:

T̂i =
1

2
λi

The total Isospin is then
∑

i T
2
i = 1

4λ
2
i =

4
31. SU(3) is different to SU(2) in the fact that it two mutually

commuting generators instead of 1. We can call once again the component along the direction of the
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Standard Model 1 The Quark Model

third generator T3 the third component of the isospin I3 and identify states by this number, but we
then also need to consider the component along the direction of T̂8 as T̂8 commutes with T̂3. The
component along this direction is known as the Hyper-charge and is denoted with a Y . Strictly we
define the hyper charge to be Y = 1√

3
λ8.

• From the definitions of the Gell Mann matrices we can check the values of the I3 and Y , for the 3
quarks:

T̂3u = +
1

2
u Ŷ u = +

1

3
u

T̂3d = −1

2
d Ŷ d = +

1

3
d

T̂3s = 0 Ŷ s = −2

3
s

We can plot Y and I3 for the three quarks and their anti-particles:

Figure 1: Quark Isospin and Hyper-charge

1.5 Light Mesons

• Since we have used λ3 and λ8 to form what is know as the Cartan sub-algebra, we can take the
remaining λi and form raising and lowering operators. There will be three pairs, that which step
respectively between the d↔ u, s↔ u and d↔ s:

T̂± =
1

2
(λ1 ± iλ2) (1.1)

V̂± =
1

2
(λ4 ± iλ5) (1.2)

Û± =
1

2
(λ6 ± iλ7) (1.3)

We can use these to find all possible Mesons made out of these 3 quarks. This is done by identifying
the extreme states (stats with maximal I3 or Y ), then apply the raising and lowering operators to
exhaust all other possible states. Since we are combining 3 possible quarks with 3 possible anti-quarks
1 then this is a case of 3⊗ 3̄ = 8⊕ 1 2. This decomposition is into a octet and a singlet and takes the
below visual form:

1Here we are only looking at 2 quark combinations here, i.e. Mesons
2The bar on the 3 just indicates that this is the anti-quark triplet
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Standard Model 1 The Quark Model

Figure 2: Decomposition of quark-anti-quark combinations

Where the singlet is plotted along with the two octet elements that have I3 = Y = 0. These quark
combinations are as we mentioned before Mesons! We now have generated more of these having
considered the strange quark as well. We are not how-ever considering spin. Quarks are spin 1/2
particles meaning it is possible to form spin 0 or spin 1 combinations of them. It turns out that
these different combinations affect the mass of the resulting bound system, meaning these are different
particles. We thus have two sets of 9 particles:

Figure 3: All Mesons, graphed by Isospin and Hyper-charge

• In terms of the quarks these are for spin-0:

Pions: |π+⟩ = |ud̄⟩, |π0⟩ = 1√
2
(|uū⟩ − |dd̄⟩), |π−⟩ = |dū⟩

Kaons: |K+⟩ = |us̄⟩, |K0⟩ = |ds̄⟩, |K̄0⟩ = |sd̄⟩, |K−⟩ = |sū⟩

Eta and Eta Prime: |η⟩ = 1√
6
(|uū⟩+ |dd̄⟩ − 2|ss̄⟩), |η′⟩ = 1√

3
(|uū⟩+ |dd̄⟩+ |ss̄⟩)

• And for the spin-1 mesons:

Rho Mesons: |ρ+⟩ = |ud̄⟩, |ρ0⟩ = 1√
2
(|uū⟩ − |dd̄⟩), |ρ−⟩ = |dū⟩

Kaon* Mesons: |K∗+⟩ = |us̄⟩, |K∗0⟩ = |ds̄⟩, |K̄∗0⟩ = |sd̄⟩, |K∗−⟩ = |sū⟩

Omega and Phi Mesons: |ω⟩ = 1√
2
(|uū⟩+ |dd̄⟩), |ϕ⟩ = |ss̄⟩

- 7 -



Standard Model 1 The Quark Model

Meson Quark Composition Isospin (I, I3) Mass (MeV)

π+ ud̄ (1,+1) 139.57
π0 1√

2
(uū− dd̄) (1, 0) 134.98

π− dū (1,−1) 139.57

K+ us̄
(
1
2 ,+

1
2

)
493.68

K0 ds̄
(
1
2 ,−

1
2

)
497.61

K̄0 sd̄
(
1
2 ,+

1
2

)
497.61

K− sū
(
1
2 ,−

1
2

)
493.68

η 1√
6
(uū+ dd̄− 2ss̄) (0, 0) 547.86

η′ Mixed state (0, 0) 957.78

Table 1: Quark composition, isospin, and mass of common light mesons.

• The Heavy Mesons are constructed from the bottom and charm quarks in a similar way.

Meson Quark Composition Isospin (I, I3) Mass (MeV)

D+ cd̄
(
1
2 ,−

1
2

)
1869.66

D0 cū
(
1
2 ,+

1
2

)
1864.84

D+
s cs̄ (0, 0) 1968.34

B+ ub̄
(
1
2 ,+

1
2

)
5279.34

B0 db̄
(
1
2 ,−

1
2

)
5279.63

B0
s sb̄ (0, 0) 5366.88

B+
c cb̄ (0, 0) 6274.9

J/ψ cc̄ (0, 0) 3096.9
Υ (1S) bb̄ (0, 0) 9460.3

Table 2: Quark composition, isospin, and mass of common heavy mesons.

1.6 Baryons

• Baryons are combinations of 3 quarks/ anti-quarks. This makes them fermions of spin 1
2 or 3/2. This

means we need to calculate 3 ⊗ 3⊗ 3. It turns out that the calculation of 3 ⊗ 3 is a little different to
that of 3 ⊗ 3̄. Since we dont have anti-quarks we can’t properly form a state that has I3 = Y3 = 0.
This means the decomposition is 3⊗ 3 = 6⊕ 3. This can be prooved by the standard ladder operator
calculations. We are then left with 3⊗ (6⊕ 3) which breaks down into the standard 3⊗ 3̄ = 8⊕ 1 and
the new 3⊗ 6 = 10⊕ 8. Overall this means the full decomposition is:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

• We can visulze this nicely with the followong:

- 8 -



Standard Model 1 The Quark Model

Figure 4: All Mesons, graphed by Isospin and Hyper-charge

• The quark composition of the individual Baryons is then:

Nucleons: |p⟩ = |uud⟩, |n⟩ = |udd⟩

Delta Baryons: |∆++⟩ = |uuu⟩, |∆+⟩ = |uud⟩, |∆0⟩ = |udd⟩, |∆−⟩ = |ddd⟩

Sigma Baryons: |Σ+⟩ = |uus⟩, |Σ0⟩ = |uds⟩, |Σ−⟩ = |dds⟩

Xi Baryons: |Ξ0⟩ = |uss⟩, |Ξ−⟩ = |dss⟩

Omega Baryon: |Ω−⟩ = |sss⟩

Baryon Quark Composition Isospin (I, I3) Mass (MeV)

p (Proton) uud
(
1
2 ,+

1
2

)
938.27

n (Neutron) udd
(
1
2 ,−

1
2

)
939.57

Λ0 uds (0, 0) 1115.68
Σ+ uus (1,+1) 1189.37
Σ0 uds (1, 0) 1192.64
Σ− dds (1,−1) 1197.45

Ξ0 uss
(
1
2 ,+

1
2

)
1314.86

Ξ− dss
(
1
2 ,−

1
2

)
1321.71

∆++ uuu
(
3
2 ,+

3
2

)
1232

∆+ uud
(
3
2 ,+

1
2

)
1232

∆0 udd
(
3
2 ,−

1
2

)
1232

∆− ddd
(
3
2 ,−

3
2

)
1232

Table 3: Quark composition, isospin, and mass of common light baryons.
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Standard Model 1 The Quark Model

1.7 Total Wavefunction

• There are many possible values of flavour, spin and colour (which we will encounter later) that a Baryon
can have:

ψ = ϕflavourχspinξcolourηspace

However, not all of these states are valid as since baryons are fermions, there total wave-functions
needs to be anti-symmetric under exchange of any two quarks. We will see later that the colour
wavefunction ξcolour is totally anti-symmetric. We are discussing the quarks with l = 0, so zero spatial
angular momentum , and since the spatial wavefunction transforms by (−1)l under parity, then ηspace
is symmetric. This means that ϕflavourχspin must be symmetric. This allows us to determine the
wave-function super positions of the quarks in terms of their flavour and spin.

1.8 Quark Charges

As a helpful reminder here are the charges of the quarks, and that they all have spin half:

Quark Charge (e) Spin

Up (u) +2
3

1
2

Down (d) −1
3

1
2

Charm (c) +2
3

1
2

Strange (s) −1
3

1
2

Top (t) +2
3

1
2

Bottom (b) −1
3

1
2

Table 4: Charge and spin of the six quarks.
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Standard Model 2 Scattering & Decay

2 Scattering & Decay

• We will need to develop some mathematical tools for studying scattering of particles and Decay.

2.1 Decay

• Unstable particles have an equal probability of decaying at every instant in time. This means the
probability of survival to time t for a particle A is governed by:

dP

dt
= −ΓAP

=⇒ P ∝ e−ΓAt

The constant ΓA is known as the total width. If there are multiple decay processes A → f , then the
total width is ΓA =

∑
f Γ(A → f). The probability ratio of the decay into an individual particle f is

known as the branching ratio:

BR(A→ f) =
Γ(A→ f)

ΓA

2.2 Cross Section

• The main object to interest to us in calculations will be the cross section, as this is measurable. Our
scattering setup to calculate the cross section will be as follows. We consider a beam of A particles of
density nA at a velocity vA at a target B:

Figure 5: Scattering setup

• The rate of scattering is then given by:

events

sec
= nAvAσ

Where σ is the cross section. It is useful for our calculations to consider all possible momenta the n
particles created in the process could have. The probability of finding each given momentum configu-
ration of the final particles is given by the differential cross section: dσ/(d3p1 · · ·d3pn), which is related
to the cross section by:

σ =

∫
d3p1 · · · d3pn

dσ

d3p1 · · · d3pn

- 11 -



Standard Model 2 Scattering & Decay

2.3 Master Formula

• We know from our study of Quantum Field Theory 3, that the quantum mechanical transition matrix
element is given by:

⟨12 · · · n|T |A(pA)⟩ = M(A→ 1 + 2 + · · ·+ n)(2π)4δ(pA −
∑
j

pj) (2.1)

Where T is the time evolution operator. The factor of M is called the invariant Matrix element. We
will sometimes refer to it as the scattering amplitude.

• To find the total rate of decay we need to integrate over the total phase, i.e. all momenta that the
particles could have subject to the constraint of momentum conservation. This will be written as:∫

dΠn =

∫
d3p1

(2π)32E1
· · · d3pn

(2π)32En
(2π)4δ(pA −

∑
j

pj)

Where we also for convenience have included in this the factors of 1/2E, so as to satisfy Lorentz
invariance.

• Another formula we will then need from QFT is a version of Fermi’s Golden rule, which tells us the
particle width for a given transition to an n−particle final state f :

Γ(A→ f) =
1

2mA

∫
dΠn|M(A→ f)|2

If the final products have spin we will need to sum over these spins. Similarly we need to do the same
for the initial state, but often this state is unknown so we simply average over all possible spins instead.
This expression is actually a simplification of the following more general expression for the cross section
in therms of the invariant matrix element:

σ(A+B → f) =
1

2EA2EB|vA − vB|

∫
dΠn|M(A+B → f)|2 (2.2)

2.4 2 Particle Collision

• We can now use the above equations to analyze the problem of a two particle collision. We will
impotently do this for the case where M is constant, as this represents the case where each point in
the phase space is equally likely. We will consider an initial state of momentum P and a final state of
two particles with momentum p1 and p2. In this scenario the phase space integral is just:∫

Π2 =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(P − p1 − p2) (2.3)

If we work in Center of Mass (CoM) frame, where P = 0, then the three spatial parts of the delta
function enforce that: p1 = −p2 and thus if P = (ECM, 0) =⇒ p1 = (E1,p) & p2 = (E2,−p), where
the particles are on shell so E1 =

√
p2 +m2

1 and E2 =
√
p2 +m2

2. With this 2.3 becomes:∫
Π2 =

∫
d3p

(2π)3
2π

2E12E2
δ(ECM − E1 − E2) (2.4)

3See my notes on QFT here.

- 12 -
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Standard Model 2 Scattering & Decay

In spherical co-ords this volume element is just d3p = p2dpdΩ. We can then deal with this integral by
using the property of the delta function for a function with only one zero at x0:

δ(f(x)) =
1

|f ′(x0)|
δ(x− x0)

=⇒ δ(ECM − E1(p)− E2(p)) =
δ(p− p̃)

|dE1/dp+ dE2/dp|

We can evaluate from the on-shell conditions that dE1/dp = p/E1 and dE2/dp = p/E2, so we can write
2.4 as: ∫

Π2 =

∫
p̃2dΩ

16π2E1E2

1

|p̃/E1 + p̃/E2|
=

1

E1 + E2

∫
p̃dΩ

16π2

=
1

8π

(
2p̃

ECM

)∫
dΩ

4π
(2.5)

We can note that in the relativistic limit E >> m1,m2 =⇒ ECM = E1 + E2 ≈ p̃ + p̃ = 2p̃, which
makes the factor in brackets in 2.5 unity. This means 2.5 becomes constant in the relativistic limit.

- 13 -



Standard Model 3 Electron Positron Annihilation

3 Electron Positron Annihilation

• We would now like to discuss the annihilation of an electron e− and its anti-particle the positron
e+. Firstly we will calculate the cross section for the process e+e− → µ+µ− (µ being muons) as this
calculation will serve as a basis for many more complicated calculations. In doing this we will once
again rely heavily on my QFT notes as we need to work with spinors for the fermions.

3.1 Feynman Diagrams

• Despite their pretty form, Feynman diagrams do not represent physical process that actually happen.
Despite this we will still use them for the basis of figuring out which terms in the expansion of the
interaction part of the scattering which (as per section 8.4 of my QFT notes) takes the form:

in ⟨p1p2|kAkB⟩out ∝ lim
t→∞(1−iϵ)

0 ⟨p1p2|T
{
exp

(
−i

∫ t

−t
dt′HI(t

′)

)}
|kAkB⟩0 (3.1)

We will expand in powers of the interaction parameter. The Lagrangian for QED (also per my QFT
notes, see section 9.1) is given by4:

LQED = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ (3.2)

• We will be working, for simplicity, in the high energy regime, where all particles in the e+e− → µ+µ−

reaction can be treated as massless. Recall that the ψ’s here are Dirac fermions, which are comprised
of two 2-component spinors know as Weyl spinors. This spinors are called left and right handed spinors
and the ψ’s which are 4-component spinors can be written as the following 5:

ψ =

(
ψL

ψR

)
Note that for this calculation it is most useful to use the Chiral representation of the Dirac gamma
matrices. This means6:

γµ =

(
0 σµ

σ̄µ 0

)
=⇒ γ0 =

(
0 I
I 0

)
, γi =

(
0 σi

−σi 0

)

• With this we can see that the QED Lagrangian 3.2 can be expanded in terms of the left and right
component spinors:

LQED = −1

4
FµνF

µν + iψ†
Rσ

µ∂µψR + iψ†
Lσ̄

µ∂µψL − eψ†
Rσ

µψRAµ − eψ†
Lσ̄

µψLAµ

+m
(
ψ†
RψL + ψ†

LψR

)
From this we can see that the last term, which is proportional to the mass, couples the left handed
spinors to the right handed ones. In fact if we have m = 0, which is indeed the situation we will
be considering, then the two left and right handed particles completely decouple and act as separate
particles. This means in the high energy case a right handed electron cannot turn into a left handed
one. Note that both species of particles also have their own interaction terms so they still interact
amongst themselves. This isolation is essentially Conservation of helicity.

4Note here the Dirac adjoint which is the bar on some of the ψ’s is defined as ψ̄ ≡ ψ†γ0.
5For a full discussion of Weyl spinors see section 4.6 of my QFT notes.
6Note here σ̄ = (1,−σ)
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Standard Model 3 Electron Positron Annihilation

• We are now ready to consider the interactions. Recall that in the calculation of terms in the power
series of 3.1 we contract ingoing and outgoing states with intermediate states. Since the interaction
terms contain 3 fields, in order to have an even number of fields to contract we need to look at
the quadratic terms of the interaction Hamiltonian HI . This allows us to immediately write down
the Feynman diagram that correspond to the first order interaction terms. We can reason that the
following diagram is the only first order term as the fields available for contraction are ψ̄, A, ψ, ψ̄, A, ψ.
Two of the ψ’s contract with the ingoing momenta and two with the outgoing in order to achieve
e+e− → µ+µ−, the final A’s must contract with themselves. This takes the following diagrammatic
form:

e− e+

µ− µ+

3.1.1 Massless Fermions

• In the case of m = 0 fermions The Dirac equation (iγµ∂µ−m)ψ = 0 reduces to the following equations
on the two spinors:

iσ̄µ∂µψL = 0

iσµ∂µψR = 0

This means the solutions will take the following form (there are two types of solutions):

ψR = uR(p)e
−ip·x, ψL = uL(p)e

−ip·x (3.3)

Here the uR(p) and uL(p) are two component spinors that must satisfy their own versions of the Dirac
equation. If we consider only plane waves propagating in the ẑ direction, so p = (E, 0, 0, pz) then this
equation is:

(E − pzσ3)uR =

(
E − pz 0

0 E + pz

)
uR = 0

(E + pzσ3)uL =

(
E + pz 0

0 E − pz

)
uL = 0

Both of these have the same solutions

(
1
0

)
and

(
0
1

)
. When uR =

(
1
0

)
it has E = pz > 0 and when

=

(
0
1

)
it has E = pz < 0. In the case of uL it is the other way round. It is convenient (see section 4.8

of my QFT notes) to normalize these spinors by
√
2E and write them in the following:

uR =
√
2Eξ+, uL =

√
2Eξ−

vR =
√
2Eξ−, vL =

√
2Eξ+

Where we have change u→ v for the negative energy solutions.
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Standard Model 3 Electron Positron Annihilation

• Big disclaimer, ξ+ and ξ− are defined to be one of the two solution (1, 0)T and (0, 1)T , how-ever the
choice of which one they are depends on the direction of motion. ξ+ is defined to be the spinor with spin
up (that means positive eigenvalue) along the direction of motion and ξ− as the spinor with spin down
(negative eigenvalue). However, we need to be careful in annihilation processes as then anti-particles
are travailing the opposite direction and thus which spinor (1, 0)T or (0, 1)T has positive eigenvalue
can swap.

• We can also do this for the more general case where the momentum is not along one of the axis. This
will be relevant as we would like to be able to calculate the differential cross section as a function of
angular variables. The picture of this in application to e+e− → µ+µ− is shown below:

Figure 6: e+e− → µ+µ− process at angle θ

With the above setup we can see that the (massless) muons have the following momentum vectors
(when the electron and positron are along the z axis):

p′− = (E,E sin θ, 0, E cos θ)

p′+ = (E,−E sin θ, 0,−E cos θ)

With this the spinor ansatz 3.3 equation for uR and uL become one of:

(E ± E sin θσx ± E cos θσz)u(p) = 0

=⇒
(
1± cos θ ± sin θ
± sin θ 1∓ cos θ

)
u(p) = 0

We can then solve for u(p) in the following way. If u(p) = (a, b)T then the top row reads:

(1± cos θ)a± sin θb = 0 =⇒ a =
∓ sin θ

1± cos θ
b

plus case: minus case:

a =
2 cos θ

2 sin
θ
2

1 + (sin2 θ
2 − cos2 θ

2)
b a =

−2 cos θ
2 sin

θ
2

1− (sin2 θ
2 − cos2 θ

2)
b

=
2 cos θ

2 sin
θ
2

2 cos2 θ
2

b =
−2 cos θ

2 sin
θ
2

2 sin2 θ
2

b

=
sin θ

2

cos θ
2

b = −
cos θ

2

sin θ
2

b
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Standard Model 3 Electron Positron Annihilation

With this we can see that going to functions of θ/2 has allowed us to find clearly normalized solutions
for u(p). These spinors are the new ξ+ and ξ−:(

sin θ
2

cos θ
2

)
,

(
cos θ

2

− sin θ
2

)
(3.4)

3.2 Matrix Element

• The setup for the scattering in the Center of Mass (CM) frame will be the following. The electron and
the positron will be moving in the opposite directions along the ẑ axis with momenta p− and p+. This
means p− = (E, 0, 0, E) and p+ = (E, 0, 0,−E). The outgoing muon and anti-muon can be scattered
at angles in the x̂ − ẑ plane. Hence their outgoing momenta are given by p′− = (E,E sin θ, 0, E cos θ)
and p′+ = (E,−E sin θ, 0,−E cos θ).

• We can then use Feynman rules for QED (see section 9.2 of my QFT notes). Let us first deal with
the annihilation of the electron and positron vertex. The Feynman rules tell us to add to our Matrix
element a −eγµ for every vertex, note that in our case since we have split our Lagrangian into right
and left handed spinors we instead add a −eσµ for right handed spinors and −ieσ̄µ for left handed
spinors. We then have the contraction of the fields with the incoming momenta. One of the fields
is a ψ† 7 this contracts with the incoming momenta of the positron to give us a v†(p+) as per the
Feynman rules. Similarly the ψ contracts with the incoming momenta of the electron to give us a
u(p−). Mathematically this looks like the following. We will pick to do this for the case of a right
handed electron and left handed positron8.:

⟨0| − eψ†
Rσ

µψR |e−R(p−)e
+
L (p+)⟩ = ⟨0| − eψ†

Rσ
µψR |e−R(p−)e

+
L (p+)⟩ = −ev†L(p+)e

−ip+·xσµuR(p−)e
−ip−·x

= −e
√
2E(0, 1)(1,σ)

√
2E

(
1
0

)
e−i(p−+p+)·x = −e2E(0, 1, i, 0)µe−i(p−+p+)·x

This vector we see here is nothing more then a polarization vector that we use to describe photons. We
will call it ϵµ1 = (0, 1, i, 0)µ. Note that the left handed current −eψ†

Lσ
µψL when acted on this electron

positron ket is zero as in the massless case the right handed electron does not couple to the left handed
fermions.

• Next up is the propagator, which corresponds to the contraction of the two Aµ fields. This propagator
in momentum space is given simply by 9 (see section 4.8 of my QFT notes):

⟨0|Aµ(x)Aν(y) |0⟩ = AνAµ =
−iηµν
q2

e−iq·(x−y)

• Finally we have the contraction of the fields with the final muon momenta. This takes the following
form, where we have used the angular versions of ξ+.ξ− as seen in 3.4:

⟨µ−R(p
′
−)µ

+
L (p

′
+)| (−e)ψ

†
Rσ

νψR |0⟩ = −e⟨µ−R(p
′
−)µ

+
L (p

′
+)|ψ

†
Rσ

νψR |0⟩ = −eu†R(p
′
+)e

ip′+·yσνvR(p
′
−)e

ip′−·y

= −e
√
2E(sin

θ

2
, cos

θ

2
)(1,σ)

√
2E

(
cos θ

2

− sin θ
2

)
ei(p

′
++p′−)·y = −e2E(0, cos θ, i, sin θ)νei(p

′
++p′−)·y

Here we arrive at a different polarization vector ϵν2 = (0, cos θ, i, sin θ)ν .

7Note this is not a ψ̄ here as we used the γ0 from the ψ̄ to make γµ diagonal so that the vertex cleanly gave us σµ and σ̄µ.
8Note jsut as we mentioned earlier since the positron is going in the opposite direction v†L(p+) = (0 1)T
9Note their is implicit time ordering operators on all quantities in this section.
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• With all the pieces assembled we can now put them all together to calculate the contribution from the
diagram:

⟨µ−R(p
′
−)µ

+
L (p

′
+)|(−e)ψ

†
Rσ

νψR |0⟩ ⟨0|AνAµ |0⟩ ⟨0| − eψ†
Rσ

µψR |e−R(p−)e
+
L (p+)⟩

= −e2(2E)2ϵν2
iηµν
q2

ϵµ1e
−i(p−+p+)·xe−iq·(x−y)ei(p

′
++p′−)·y

= −e2(2E)2ϵν2
iηµν
q2

ϵµ1e
−i(p−+p++q)·xei(p

′
++p′−+q)·y

We can then remember that we are expanding in powers of the interacting Hamiltonian HI which is
an integral over all space. This means we must integrate the above expression over all x and y. We
can see that the only x and y dependent terms are the exponentials, so these integral give us factors
of (2π)4δ(4)(p− − p+ − q) and (2π)4δ(4)(p′+ − p′− + q). So we have:

−2e2(2E)2ϵ∗ν1 O
iηµν
q2

ϵµ2 (2π)
4δ(4)(p− + p+ + q)(2π)4δ(4)(p′+ − p′− + q) (3.5)

Then we are required to integrate over all undetermined momenta, which is just integrating over q,
this takes the two delta functions and requires that p− + p+ = p′+ + p′−. which is just momentum
conservation for the whole interaction. This also forces q2 = (p− + p+)

2 = (2E, 0, 0, 0)2 = (2E)2. All
in all integrating 3.5 results in:

−e2(ϵν2ηνµϵ
µ
1 )(2π)

4δ(4)(p− + p+ − p′+ − p′−)

If we look at expression 2.1, then we can see that this is exactly what we would expect to see from an
interacting diagram, and that what is left over after the integration must be the matrix element M for
this e+e− → µ+µ− process.

• Finally from their definitions we can see that ϵν2ηνµϵ
µ
1 = 1 + cos θ. This means our matrix element for

this particular e+e− → µ+µ− process is:

M
(
e+Le

−
R → µ+Lµ

−
R

)
= −e2(1 + cos θ)

Similarly one can do the same exact calculation we did here to get the other three amplitudes:

M
(
e+Re

−
L → µ+Rµ

−
L

)
= −e2(1 + cos θ)

M
(
e+Le

−
R → µ+Rµ

−
L

)
= −e2(1− cos θ)

M
(
e+Re

−
L → µ+Lµ

−
R

)
= −e2(1− cos θ)

3.3 Cross sections

• We can then directly use 2.2 to calculate the cross sections for each of these processes. For the phase
space part of this integral we can use our previously calculated expression 2.5 for two particle collisions.
In plugging into 2.2, there is a little difficulty in figuring out what the velocities |v+ − v−| will look
like if the particles are massless. for this we can simply recall that massless particles must move at the
speed of light, which is c = 1 in our units. So seeing as the initial electron and positron are moving in
opposite directions, we have that |v+ − v−| = 2. This means the cross section for the e+Le

−
R → µ+Lµ

−
R

process is:

σ(e+Le
−
R → µ+Lµ

−
R) =

1

2E2E · 2

∫
dΠn|M(e+Le

−
R → µ+Lµ

−
R)|

2

=
1

16πE2
CM

∫
dΩ

4π
e4(1 + cos θ)2
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This expression allows us to write down the differential cross section in terms of α ≡ e2

4π :

dσ

dΩ
=

α2

4E2
CM

(1 + cos θ)2

We find that if we average over the 4 possible processes then the differential cross section becomes:

dσ

dΩ
=

α2

4E2
CM

(1 + cos2 θ)

Integrating this gives us the total cross section:

σ(e+e− → µ+µ−) =
4πα2

3E2
CM

(3.6)

3.4 e+e− → Hadrons

• The cross section we have just calculated can be very easily generalized to many other first order
calculations where we also assume the that the particles involved are massless in the high energy limit.
Take for example an electron and positron colliding to form hadrons. the only changes we need to
make are 1 : the value of the coupling e→ Qfe where Qf is the charge of the quark species in question
10. 2: to get the final cross section the set of all processes includes all possible quarks that we are
considering so we must sum over them. The final result is simply:

σ(e+e− → hadrons) =
∑
f

3Q2
f

4πα2

3E2
CM

Note there is a mysterious factor of 3 that has popped up here. This is due to the fact that quarks
have another quantum number called colour which we will see later. There are 3 colours and we must
sum over them hence the factor of 3.

10This only happens for two of the 4 e’s in the final answer above above as there are 2 quarks, an electron and a positron,
hence we get a factor of Q2

f .
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4 Deep Inelastic Scattering

• We will now be discussing processes that probes the structure of the proton (quarks gluons ect). This is
done by electron positron scattering into electron plus some hadrons . The “inelastic” refers to the fact
that this process breaks the proton and produces hadrons, thus a high momentum transfer is needed.
This high energy transfer is so large that the mass of the hadrons produced are >> mp. The “Deep”
refers to the fact that this scattering probes the inner structure of the proton. The first interacting
Feynman diagram for this process looks like the following:

e−

e−

Hadrons

p

• If the incoming electron has momentum k and the outgoing photon momentum k′, then we know from
conservation of momentum at the vertices of Feynman diagrams that the momentum carried by the
photon q is given by q = k − k′. This means for this scattering process if we look at the leading order
where me → 0, then q2 = −2k · k′, as k and k′ are both light-like in opposite directions meaning
k2 = k′2 = m2

e = 0 and hence k · k′ = E2 + k · k′ = E2 > 0. This makes q2 < 0 i.e. space-like. With
q being space-like there is always a frame where the energy transfer is 0 and there is only momentum
transfer. Thus we define Q2 ≡ −q2 to be the momentum transferred.

4.1 The Parton Model

• A simple model posited by Feynman was to model the proton as being made of a collection of smaller
constituents called partons. We can assume the partons are spin half quarks carrying a flavour label f
(or f̄ for anti quarks). We assume at high energies the particle have momenta in line with the proton
such that the transverse components are of the same order of the momenta with in the bound state of
the proton. With this we can model each parton as having a fraction ξ of the protons total momenta
P :

pµ = ξPµ

The parameter ξ must be 0 < ξ < 1. We then define the Parton distribution functions (PDFs) ff (ξ)dξ
as the probability of finding a parton of type f caring momentum fraction ∈ (ξ, ξ + dξ). Clearly these
PDFs must satisfy a sum rule for the total momentum to be P :∫ 1

0
dξ

∑
f

[
ff (ξ) + ff̄ (ξ)

]
= 1

We can then consider that the electrons interacts with each of the quarks in the proton and that the
resulting cross section for the production of a hadron state X is given by the sum over all possible
interactions at all possible momenta:

σ(e−p→ e−X) =

∫ 1

0
dξ

∑
f

[
ff (ξ) + ff̄ (ξ)

]
σ(e−q(ξp) → e−q)
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Note here we are ignoring the effects of the strong interaction. Also we have written the cross section
for the quark and anti-quark as the same as we know from our discussions at the end of the last chapter
that the cross sections of electrons and quarks are proportional to the charge squared and thus do not
depend on the sign.

4.2 Crossing Symmetry

• We now wish to obviously calculate these cross sections. Before we blindly go into the calculations as
we did in the last chapter we can stop to think is there anything clever we can do to leverage the hard
work we did in the last chapter. If we draw the diagram for each of the electron quark interactions the
firs order diagram is:

e−

e−

q

q

We can notice that this is just the interaction we considered at the end of the last chapter with a few
changes (see the Feynman diagram at the top of pg 13 with the muons replaced with quarks). The
changes are: instead of having an incoming positron we have and outgoing positron, similarly instead
of having an out going anti-quark we have an outgoing quark. This is essentially rotates the diagram
sideways (and flips it). It turns out that this change results in the exact same Matrix elements (only
when squared ans summed over spins). The reason this is true is a little technical and I will leave the
proof to (hopefully) be in my QFT notes. This symmetry is known as crossing symmetry.

• To use crossing symmetry it is useful to establish the following conventions and notation for 2 particle
→ 2 particle interactions. We can consider the general case where we don’t know what the intermediate
interaction looks like:

p3

p1

p4

p2

Figure 7: Crossing symmetry labeling

Note that for simplicity we have made all the momenta exiting the interaction so that conservation of
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momentum for the diagram reads p1+p2+p3+p4 = 0. When considering what makes up the invariant
matrix element of a given must be made of Lorentz invariant quantities. Since the only inputs are the
momenta, the only combinations we can have we denote with the following variables called the the
Mandelstam variables:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 + p3)
2 = (p2 + p4)

2

u = (p1 + p4)
2 = (p2 + p3)

2

These are not all independent as it can be shown that s+ t+ u = m1
1 +m2

2 +m2
3 +m2

4.

• To see how these variables can help us with crossing symmetry we can consider the scattering where
particles 1 and 2 co-linearly scatter to form particles 3 and 4.

With this we have that the momenta are:

p1 = (−E, 0, 0,−E), p3 = (E,E sin θ, 0, E cos θ)

p2 = (−E, 0, 0, E), p4 = (E,−E sin θ, 0,−E cos θ)

Note that since we have defined all the momenta to be exiting the diagram, particles 1 and 2 have
negative energy. With this setup we have that:

s = (2E, 0, 0, 0)2 = E2
CM

t = (0, E sin θ, 0, E(cos θ − 1))2 = −2E2(1− cos θ)

u = (0,−E sin θ, 0,−E(1 + cos θ))2 = −2E(1 + cos θ)

Also since we have used light-like momentum vectors s + t + u = 0, which is expected as this should
be equal to the sum of the masses which are in this case massless.

• With this setup we can use crossing symmetry to make our calculations a lot easier. Recall that the
QED propagator contains a 1/(q2 −m2), and thus final answer contained 1/(q2 −m2), where q2 by
momentum conservation at the vertex must be q2 = (p1+ p2)

2 ≡ s (as shown in the last section). This
then means that annihilation diagrams correspond to:

∼ 1

s−m2

- 22 -



Standard Model 4 Deep Inelastic Scattering

This is subsequently known as an s channel process.

• We can then consider scattering, looking at the diagram below we can see that momentum conservation
will make it so that q2 = (p1+ p3)

2 ≡ t (where we refer to the Figure 7 for the labeling), thus we have:

∼ 1

t−m2

This is then known as a t channel process.

• Finally there is one more, which is the same scattering but with the final states swapped, this then has
q2 = (p1 + p4)

2 ≡ u, so we get the u-channel process:

∼ 1

u−m2

• With these identifications crossing symmetry becomes very easy! If we started with a t channel process
we can relate its amplitude to a s channel annihilation by simply changing s↔ t.

4.3 Electron Quark Scattering

• We are now prepared to write down our matrix elements for the deep inelastic scattering. We start
by writing down the matrix elements of the electron positron annihilation into quarks. This we we
discussed at the end of the last section, is just the same elements as the e−e+ → qLq̄R

|M
(
e+Le

−
R → q+L q̄

−
R

)
|2 = |M

(
e+Re

−
L → q+R q̄

−
L

)
|2 = Q2

fe
4(1 + cos θ)2

|M
(
e+Le

−
R → q+R q̄

−
L

)
|2 = |M

(
e+Re

−
L → q+L q̄

−
R

)
|2 = Q2

fe
4(1− cos θ)2

The next step is to write these in terms if the Mandelstam variables:

|M
(
e+Le

−
R → qLq̄R

)
|2 = |M

(
e+Re

−
L → qRq̄

−) |2 = 4Q2
fe

4u
2

s2

|M
(
e+LeR → qRq̄L

)
|2 = |M

(
e+Re

−
L → qLq̄R

)
|2 = 4Q2

fe
4 t

2

s2

This then immediately lets us write down the amplitudes for the e−q → e−q scattering. We have
with this change of diagram that p1 → p1, p2 → p3, p3 → p4, p4 → p2 as we simply just replace
s→ t, t→ u, u→ s. So we can write down the 4 matrix elements:

|M
(
e−RqL → e−RqL

)
|2 = |M

(
e−LqR → e−LqR

)
|2 = 4Q2

fe
4 s

2

t2

|M
(
e−LqL → e−LqL

)
|2 = |M

(
e−RqR → e−RqR

)
|2 = 4Q2

fe
4u

2

t2

• We can then calculate the cross sections as we did in the last section, using 2.2, remembering that we
are treating the particles as massless so |vA − vB| = 2. We will then use relativistic limit of 2.5 to
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evaluate the phase space integral. This makes the cross section for each process take the form:

σ(. . .) =
1

2E2E · 2

∫
dΠn|M(. . .)|2

=
1

16πE2
CM

∫
dΩ

4π
|M(. . .)|2

We then have to be careful about how we add up these amplitudes. There can only ever be two
incoming spins, which we cannot know as the beams are not polarized, this means in order to match
experiment we must average over initial spins. We do however want to know the cross section for all
possible final spins, this means we must sum over the final spins. We do not sum over initial states
as each spin configuration has equal probability of occurring, hence averaging is all that is needed.
Similarly the outgoing spins already have the probabilities encoded with them via the matrix elements
M, so we do not need to average them further.

Essentially both these things are doing the same thing to each set of states. We sum the states weighted
by their probability its just that for the incoming spin states all the probabilities are the same so the
sum is essentially an average.

• All this means for this calculation is that we sum over all the M’s and divide by 4 to average the initial
states as they each only have one final state. The total cross section is then:

σ(e−q → e−q) =
1

16πE2
CM

∫
dΩ

4π

1

4

∑
|M(. . .)|2

=
1

16πE2
CM

∫
dΩ

4π

2

4

(
4Q2

fe
4 s

2 + u2

t2

)
=

e4

16π

Q2
f

s

∫
d cos θ

(
s2 + u2

t2

)
Where we have used the fact that s = E2

CM. This means:

dσ

d cos θ
=
πα2

s
Q2

f

(
s2 + u2

t2

)
This can then nicely be written as the following using the fact that t = −2E2(1 − cos θ) =⇒ dt =
−1

2sd cos θ:

dσ

dt
=

2πα2

s2
Q2

f

(
s2 + u2

t2

)
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5 Quantum Chromodynamics
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