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Abstract

Developing a successful theory of quantum gravity is one of the most complex challenges facing
theoretical physicists today. Some of the greatest jumps in our understanding of how gravity and
quantum mechanics interact, have come from studies of Quantum Field Theory (QFT) in curved
spacetime. This project studied how quantum fields propagating in different space-times can lead
to a plethora of intriguing results, particularly with regards to black holes. First the Unruh effect
[18] was studied to introduce how QFT can lead to particle creation for accelerated observers.
Next, building on this, Hawking’s original paper [13] on Hawking radiation was analysed to see
how this could be extended to black holes. Finally Raphael Bousso and Stephen Hawking’s 1997
paper “(Anti)Evaporation of Schwarzchild-de Sitter Black Holes” [3] was studied to see how a
Schwarzchild black hole immersed in a de Sitter background can evolve in the presence of quantum
fields, leading to interesting dynamics.
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“Consideration of particle emission from black holes would seem to

suggest that God not only plays dice, but also sometimes throws them

where they cannot be seen.”
-Stephen Hawking
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Chapter 1

Introduction & Background

The two pillars on which, most, if not all of modern theoretical physics stand on, are General Rel-
ativity (GR) and Quantum Field Theory (QFT). On one hand these theories are so fundamentally
different, that we have so far, been unsuccessful at creating a theory of quantum gravity. On the
other hand, these are both field theories and hence are somewhat compatible at a semi-classical
level. By studying instances where the effects of both quantum fields and gravity are present and
relevant, but not in a way that spacetime changes on a large scale; we can learn a lot about how
these two different theories interact. This type of analysis is important as it cannot only lead to
new and interesting physics, but it also gives us a outline, in the form of semi-classical limits, for
what an eventual theory of quantum gravity will look like. Studying the propagation of quan-
tum fields on a fixed, but curved background is possible and is known simply as QFT in curved
spacetime, the framework of which describes physics at low energies, far below the Planck scale.

The first promising results that displayed that QFT in curved spacetime could lead to new
physics came in the early 1970’s. In 1973, Jacob Bekenstein [1] proposed that Black holes have
entropy proportional to the area of their horizons. In an attempt to explain how this could fit into
the picture of thermodynamics Stephen W. Hawking in 1975 [13] applied QFT to the space time
surrounding a black hole, showing that they can in fact radiate as if they have a temperature. In
1976, a year later, William G. Unruh [18] showed that radiation could even be seen in flat time for
an observer accelerating through a vacuum.

By the late 1990’s many further techniques had developed for explaining and encoding evap-
oration and other quantum effects into models involving gravity. In 1997 Raphael Bousso and
Stephen W. Hawking [3] used some of these techniques to study the evolution of a Schwarzschild
black hole immersed in a de Sitter background.

The aim of this work is to gather and explore a selection of the results associated with QFT in
curved spacetime with a view to presenting them as a sort of technical history of the concept, the
structure of which is as follows. In the rest of this Chapter 1, a brief introduction to QFT and GR
is given as well as de Sitter spacetime. In Chapter 2, the Unruh effect is investigated to introduce
how temperature can arise from QFT, before using this as a base to understand Hawking’s original
paper in Chapter 3. Finally Chapter 4 takes a look at Raphael Bousso and Stephen Hawking’s
1997 paper “(Anti-)Evaporation of Schwarzschild-de Sitter Black Holes”.
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Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 1. Introduction & Background

1.1 Quantum Field Theory

Quantum field theory is the natural extension of quantum mechanics to incorporate special rela-
tivity. In quantum mechanics, quantities such as position are promoted to operators in order to
represent how measurements can affect the states they are acting on. However, time is not given
such treatment and is instead left as a background parameter. Einstein’s theory of special rela-
tivity tells us that we must treat space and time in the same way, contradicting this very notion.
Clearly to reconcile these two theories, something in quantum mechanics needs to change. There
are two ways of going about this. The first approach would be to promote time to an operator, but
this gets messy quite quickly. The other is to demote position x back to being a parameter. But
what are the consequences of this? It just means that what ever object we are using to describe
our system with must be a function of the continuous variable x and t. This is identical to how a
field is described and this fact forms the motivation for quantum field theory.

1.1.1 Klein Gordon Field

Once we have established that the fundamental objects needed to describe relativistic quantum
physics are fields ϕ(x, t)1, how do we proceed? The natural progression is to impose that these
fields must obey the relativistic energy equation. That is, they must satisfy E2 = p2 +m2. But
this is not in the language of quantum mechanics. To do that we need to change p → −iℏ∇ and
E → iℏ∂t. Applying this version of the relativistic energy equation to our field ϕ gives us (in
four-notation2): (

∂2t −∇2
)
ϕ(x, t) = ∂µ∂

µϕ = m2ϕ (1.1)

=⇒
(
∂µ∂

µ −m2
)
ϕ = 0 (1.2)

This is whats is know as the Klein Gordon Equation and the fields that satisfy this are the
simplest fields one can study in QFT. Particles whose fields satisfy this equation turn out to be
spin 0 particles.

Solutions to the Klein Gordon Equation

Throughout this work, calculations can be made less complex by studying a massless spin 0 Klein
Gordon field, which will satisfy ∂µ∂

µϕ ≡ □ϕ(x) = 0. This equation can be solved by assuming a
separable ansatz, namely ϕ(x, t) = χ(x)f(t). We can then plug this ansatz into the KG equation
1.1 and divide across by −ϕ = −χϕ:

− 1

f
∂2t f +

1

χ
∇2χ = m2

Since x and t are independent, both the terms on the LHS of this equation must be equal to
constants. Thus we suggestively write:

− 1

f
∂2t f = E2 =⇒ f ∝ e±iEt

1

χ
∇2χ = −p2 =⇒ χ ∝ e±ip·x

1Note that we have assumed here that our fields are scalar fields, meaning they just have a single number
attributed to them at each point in spacetime.

2Note in this work we use natural units ℏ = G = k = 1 and the mostly plus Minkowski metric (−+++).
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Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 1. Introduction & Background

Through imposing that the field ϕ must evolve through the standard unitary time evolution op-
erator of quantum mechanics, one finds that in the combination ϕ = χf , the exponents ±iEt and
±ip · x must be of opposite sign. Hence, there are two types of modes for the KG to be made
up of. Following proper ODE methods, one can write down the most general combination as a
linear superposition of all possible values of the constants E and p. Since they are related via
the equation E2 = p2 +m2, which we can now recognize as the energy equation, we only need to
sum over one of these parameters. Also, seeing as they can take on any values, the superposition
should be an integral, with the coefficients of the modes depending on p3.

ϕ =

∫
d3p

(2π)3
1√
2Ep

[
ape

−ip·x + a†pe
ip·x] (1.3)

Notice here that we have also defined the coefficients of the modes with an extra factor of 1/
√

2Ep,
where E2

p = p2 +m2. This is added so that this field is correctly normalized with respect to the
KG inner product, which we introduce in section A.1.4. We also have that the coefficients of the
two modes are related, since we have a and a†. This is because these coefficients can be complex
but must take this form for the entire integral to be real, which we require for a real scalar field.

1.1.2 Second Quantization

To quantize the above presented field theory, ϕ needs to be promoted to an operator that satisfies
a set of commutation relations. We have not written down a Lagrange density yet, but it is
straightforward to show that it takes the form:

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 (1.4)

The equations of motion of the Lagrange density Klein Gordon equation. With a Lagrangian
defined it is then sensible to interpret ϕ as playing the role of a position co-ordinate, meaning its
conjugate quantity, which we will call the momentum density, is defined as:

π(x) =
∂L
∂ϕ̇(x)

For the above defined Lagrangian 1.4 we can see that π = ϕ̇ and hence π takes the following form
according to 1.3:

π =

∫
d3p

(2π)3

√
Ep

2

[
ape

−ip·x − a†pe
ip·x] (1.5)

With a conjugate quantity defined, that which is left to do is to define commutation relations
such that [ϕ(x), π(y)] = iδ(x − y). If one plugs 1.3 and 1.5 above into this condition4, then it is
equivalent to the coefficients ap and a†p, which are now operators in the quantised theory, satisfying
the relations: [

ap, a
†
q

]
= (2π)3δ(p− q)

[ap, aq] =
[
a†p, a

†
q

]
= 0

(1.6)

Making them creation and annihilation operators!

3Note here we switch to 4-vector notation and hence must recognize p0 as Ep.
4For proof of this as well as a broader overview of QFT see these notes I made [4].
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Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 1. Introduction & Background

1.2 General Relativity

General relativity is the extension of Einstein’s theory of special relativity to include gravity. It
continues to treat space and time on the same footing, but its main difference to special relativity is
that it allows time and space to “bend”, a drastically different approach to Newtons idea of a fixed
and absolute space. More formally, space and time together are treated as a manifold with the
curvature and bending of space encoded on this manifold in form of a metric. This metric tells us
how close together any two vectors defined at the same point are to each other. It must be a smooth
function so that these angles vary continuously as we move from point to point. This in turn fixes
the curvature of space as the tangent vectors of particles on trajectories change smoothly from
point to point, tracing out a path in spacetime that may no longer be straight. This description
of space and time allows gravity to be explained in a very elegant way. We simply require that
the curvature of spacetime is caused by the presence of mass. Then the particles moving in the
presence of massive objects follow curved paths, not because they are experiencing a force, but
because they are following ”straight” lines on the curved manifold of spacetime. These lines are
of course no longer straight, instead we classify them by the curves that are parallel transported
by their own tangent vectors. These paths are known as geodesics.

1.2.1 Tensors

There is another issue that needs to addressed in the formalism of general relativity. This theory
should, as in special relativity, not be dependent on any one set of co-ordinates to define our
physics with respect too. We should instead be able to make any co-ordinate transformation and
arrive at the same results. This can be achieved by imposing that the objects we use are tensors
(For example the metric we mentioned earlier is a tensor denoted gµν). These are defined by
their transformations that leave the total tensor invariant as the components and basis elements
transform in opposite ways. The components of an n-tensor transform under a change of co-
ordinates from the system xµ to yν via:

T µ1···µn → ∂xµ1

∂yν1
· · · ∂x

µn

∂yνn
T ν1···νn

This independence on co-ordinate system makes general relativity a background independent the-
ory.

1.2.2 Christoffel Symbols

As in many theories we would like to be able to see how some of our parameters, such as the
components of vectors, change with respect to our co-ordinates. However, the partial derivative
of the component of a vector: ∂µV

ν does not transform like a tensor, since when V µ → ∂xµ

∂xν
V ν ,

the factor of ∂xµ

∂xν
may depend on co-ordinates and hence the derivative will hit this creating an

extra term through the product rule. The best way to fix this is to define a so called co-variant
derivative which is the partial derivative plus a term that will exactly cancel this extra term from
the product rule. Consistently defining the derivative this way leads to the new following action
on the components of a vector:

∇µV
ν = ∂µV

ν + ΓνµσV
σ
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Where we have defined the Christoffel symbols Γνµσ. The co-variant derivatives operation on higher
order tensors will involve more of these symbols as there are more of the product rule terms to
cancel. Notably the action of the co-variant derivative on a scalar is just the partial derivative as
a scalar does not transform. In terms of the metric tensor gµν it turns out that these symbols are
given by:

Γσµν =
1

2
gσα (∂µgνα + ∂νgµα − ∂αgµν)

1.2.3 Riemann Curvature

To examine the structure of curved spacetime it is useful to attempt to describe how much it
”curves”. Curvature should classify how different a space is to being flat. One of the main
properties of curved space, that we may take for granted, is that the order of operations of things
does not matter. We can go this way and then that way, or that way and then this way and end
up at the same spot no matter what. If we note that the co-variant derivative of a vector in a
direction along which it is parallel transported is zero, then we can use the co-variant derivative
as a measure how much the path of a vector changes relative to how it would have been parallel
transported. The natural extension is to then consider the difference between between applying
the co-variant derivative in one direction then another, vs the other way round. This leads us to
define the following quantity:

[∇µ,∇ν ]V
ρ ≡ Rρ

λµνV
λ

This tensor is known as the Riemann curvature tensor and encodes with in it everything we need
to know about the curvature of a space-time. If we evaluate out this commutator we find that in
terms of the Christoffel symbols:

Rρ
λµν = ∂µΓ

ρ
νλ − ∂νΓ

ρ
µλ + ΓρνσΓ

σ
νλ − ΓρνσΓ

σ
µλ

Having a tensor with 4 indices is not always useful so we often consider contractions of this tensor.
The first is known as the Ricci tensor :

Rµν = Rλ
λµν

And further more we can contract this with the metric to get a scalar:

R = gµνRµν

This is know as the Ricci curvature.

There are not many scalar quantities we can think of to possibly use to write down an action
principle in GR. The contractions of the metric with itself just give us the dimension of the
spacetime, and we can always find co-ordinates such that the first derivatives of the metric vanish
so the first non trivial action must be made of a scalar made out of second derivatives of the metric.
This is exactly what the Ricci scalar is. It turns out that doing this works out exactly leading us
to the Einstein Hilbert action, which we will see later.
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1.2.4 Schwarzschild Black Holes

According to Birkhoff’s theorem (See pg 197 of [6] for proof), the Schwarzschild metric is the
unique, spherically symmetric solution to the vacuum Einstein equation: Rµν = 0. The Schwarzschild
metric takes the following form:

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, f(r) =

(
1− 2M

r

)
(1.7)

with dΩ2 = dθ2 + sin2 θdϕ2. We will try, where possible, to carry out the calculations using f(r)
such that the results may be easily generalized to other potentials of the same form, but with
different f(r). However, when specifically talking about Schwarzschild black holes, we must have
that f(r) =

(
1− 2M

r

)
as above. This solution does not specify that the source itself be static.

For example we could have the case of a collapsing star, and as long as the collapse is spherically
symmetric, the metric can still be of the form 1.7. This will be the scenario that will be considering
later in the chapter on Hawking Radiation 3.

1.2.5 Singularities

From the above metric, it can be seen 1.7 that there is a co-ordinate singularity, in that, as r → 2M
we have f(r) → 0, so the metric becomes undefined. We will see later that this is just due to our
choice of co-ordinates, and that there is a co-ordinate system in which the metric is well behaved.
There is also clearly a co-ordinate singularity at r = 0. This one, however, cannot be tamed by
any change of co-ordinates. In fact there are co-variant quantities, such as:

RµνρσRµνρσ =
48G2M2

r6

These clearly blow up as r → 0, meaning r = 0 is a singularity. Hence, GR cannot accurately
describe what is happening at this point.

1.2.6 Null Geodesics

To best determine both the causal structure of spacetime and the paths followed by massless scalar
particles that make up the radiation seen later in this work, it is worth studying null geodesics.
Null geodesics satisfy ds2 = 0, so by fixing the angles θ and ϕ, dΩ = 0 and the metric 1.7 as:

0 = ds2 = −f(r)dt2 + dr2

f(r)

=⇒ dt

dr
= ± 1

f(r)
= ±

(
1− 2M

r

)−1

(1.8)

From this, it can be extrapolated that a massless particle on a geodesic that is traveling towards
the origin, as measured by a distant observer who is using the t time co-ordinate, never seems
to get there. This is because if we integrate 1.8 to solve for t we find (see appendix B.1.1 for
integration):

t− t0 = r + 2M ln
( r

2M
− 1
)

(1.9)
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Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 1. Introduction & Background

From this it is clear that the total time for a massless particle to fall into the black hole diverges.
Furthermore, since dr

dt
→ 0 as r → 2M , progress along a null geodesic gets slower and slower as

the massless particle travels into the black hole. Therefore, we need different co-ordinates to make
sense of this. By instead parametrising the geodesics by the time taken to fall in, we can use our
expression from 1.9 to define the so called Tortoise co-ordinate r∗ where:

r∗ = r + 2M ln
( r

2M
− 1
)

(1.10)

With this, the issue of the singularity at r = 2M is lessened by placing it at infinity. In these
co-ordinates the metric takes the below, form using the fact that dr∗ = dr/ (1− 2M/r):

ds2 =

(
1− 2M

r

)[
−dt2 + dr∗2

]
+ r2dΩ2 (1.11)

Where here r should be thought of as a function of r∗. If we want to be more general, to get any
f(r) metric to this form, we would require that f(r)dr∗2 = 1

f(r)
dr2 =⇒ r∗ = ±

∫
1

f(r)
dr + C.

Which has the metric f(r) [−dt2 + dr∗2] + r2dΩ2.

1.2.7 In/Out-going Geodesics

We can see from this metric 1.11 that null geodesics now just have −dt2+dr∗2 = 0 =⇒ dt = ±dr∗,
which means t∓r∗ = const. So we have two co-ordinates that characterize the geodesics of massless
particles 5:

u = t− r∗

v = t+ r∗

These are known as Eddington-Finkelstein co-ordinates. To see what is the difference between
these co-ordinates, notice that for u we have:

dt = dr∗ =⇒ dt =
dr

1− 2M
r

=⇒ dr

dt
= 1− 2M

r

Then seeing as these co-ordinates only make sense for r ≥ 2M , we must have that dr
dt

≥ 0. The
radius increasing in time means, these are outgoing solutions. For v we have the opposite as
dt = −dr∗, meaning they correspond to ingoing solutions. We can note that the metric in these
co-ordinates takes the following form for v and r (see appendix B.1.2):

ds2 = −
(
1− 2M

r

)
dv2 + 2drdv + r2dΩ2 (1.12)

Or in just u and v:

ds2 = −
(
1− 2M

r

)
dudv + r2dΩ2 (1.13)

These co-ordinates correspond to the black hole equivalent of left and right moving modes and we
will later split our scalar field into this modes as we did for the left and right moving in 2.29.

5Note that we have used the same notation for these co-ordinates as we did for the light-cone co-ordinates in
the last chapter. This is because if we take the limit as r >> 2M , we can see that 1.10 reduces to r∗ = r. So we
end up with the same co-ordinates far from the black hole.
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1.2.8 Kruskal co-ordinates

To talk about co-ordinates that are regular at the horizon, it is essential to “bring back” the
horizon at r = 2M from being infinitely far away, to having a finite value. ideal choices for these
are:

U = −e−u/4M

V = ev/4M
(1.14)

These are colloquially referred to as Kruskal-Szekeres co-ordinates, but technically these refer
to T = 1

2
(V + U) and R = 1

2
(V − U), which are the corresponding time-like and space-like co-

ordinates respectively. This work however, will still often refer to U and V as Kruskal co-ordinates.
The metric in these co-ordinates takes the following form (see appendix B.1.3):

ds2 = −32M3

r
e−r/2MdUdV + r2dΩ2 (1.15)

Notice that this metric does not have a singularity at r = 2M , which means r = 2M is just
a co-ordinate singularity as previously mentioned. This also means that these co-ordinates are
suitable candidates for co-ordinates near r = 2M , but a more rigorous argument for this will be
made later in Chapter 3.

1.2.9 Penrose Diagrams

Most of the above mentioned co-ordinate transformations are quite useful in describing different
sections and properties of black holes. However, with the horizon r = 2M , either being a singular
point of the metric, or infinitely far away it is difficult to visualize what spacetime looks like near the
black hole. Kruskal co-ordinates almost solve this problem except they do not fit all of spacetime
on a single diagram. To achieve this it is necessary to use a function such as arctan that takes
infinities to finite values. We also want to make sure to compactify along the light-cones, hence
removing the infinities in the light cone co-ordinates. This results in the preservation of light-cone
angles, meaning massless particles still travel at 45◦ in our new diagrams as the metric will become
conformally flat (ignoring angular co-ordinates). Let us thus posit the following variable:

u′ = arctan (U)

v′ = arctan (V )
(1.16)

With these the metric takes the form:

ds2 = −32M3

r
e−r/2M

du′dv′

cos2 u′ cos2 v′
+ r2dΩ2 (1.17)

With u′ and v′ it is then possible to separate them out into time-like and space-like co-ordinates
in the usual manner. τ = 1

2
(u′ + v′) and ρ = 1

2
(v′ − u′). Figure 1.1 shows a plot of these diagram

of these τ and ρ co-ordinates along with lines of constant .

1.3 De Sitter spacetime

De Sitter spacetime is a maximally symmetric solution to Einstein’s gravitational field equations
involving a positive cosmological constant, which results in constant positive curvature. In physical
terms de Sitter space describes a universe undergoing accelerated expansion, which is known from
observations to be the case for our universe.
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Figure 1.1: Penrose diagram of Schwarzschild space time. i+(−) is future (past) time-like infinity
and i0 is spatial infinity.

1.3.1 Cosmological Constant

The Einstein Hilbert action, with the addition of a cosmological constant, takes the following form
[6]6:

SEH =
1

16πG

∫
d4x

√
−g [R− 2Λ] (1.18)

If one varies the action with respect to the metric it results in the following equations of motion:

Rµν −
1

2
gµνR + Λgµν = 0 (1.19)

Contracting both sides with gµν we get R − 1
2
(4)R + Λ(4) = 0 (since gµνgµν = 4) which implies

that R = 4Λ. This makes the above EoM 1.19 become:

Rµν = Λgµν (1.20)

One can then proceed in the same manner as the Schwarzschild case (see chapter 5 of [6]), i.e. by
making a spherically symmetric ansatz of the metric, calculating the Ricci tensor and, using 1.20
to derive the form of the functions in the ansatz. For a positive cosmological constant as we have
in de Sitter space, the result is the following metric7:

ds2 = −
(
1− Λ

3
r2
)
dt2 +

dr2

1− Λ
3
r2
dr2 + r2dΩ2 (1.21)

6G is here for aesthetic reasons we will subsequently set it to 1
7Note that the solution we present here is only the particular solution to Rµν = Λgµν . We could still have a

2M/r term which is a solution to the homogeneous solution Rµν = 0, but you may consider that we have setM = 0.
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Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 1. Introduction & Background

This bears resemblance to the Schwarzschild metric 1.7, just with a different f(r) = 1 − Λ
3
r2.

This shows that there is a co-ordinate singularity at f(r) = 0, so r = 1√
Λ
. This corresponds to a

cosmological horizon and can be physically interpreted as the radius after which information would
need to propagate faster then the speed of light to overcome the affects of expansion.

1.3.2 Embedding Co-ordinates

n-dimensional de Sitter space is more often discussed in the context of it being embedded in an
n + 1 dimensional space. Typically de Sitter is described as a sub-manifold of n + 1-dimension
Minkowski space, which has the following metric:

ds2 = −dX2
0 +

n∑
i

dX2
i

In this space n−dimensional de Sitter space is described as the hyperbolic surface (see Figure 1.2):

−X2
0 +

∑
i

X2
i = XµX

µ = ℓ2

Where ℓ has dimensions of length and is the characteristic scale of the space. We can achieve this
metric and constraint for n = 4 from 4.1 with the following change of co-ordinates:

X0 =

√
3

Λ
− r2 sinh

(√
Λ

3
t

)
, X1 =

√
3

Λ
− r2 cosh

(√
Λ

3
t

)
, Xi = ryi

Where here yi are co-ordinates on the 2−sphere (i.e. y2 = cosϕ sin θ, y3 = sinϕ sin θ, y4 = cos θ),

such that
∑

i dy
2
i = dΩ2. With this it can be verified that XµX

µ = 3
Λ
, so ℓ =

√
3
Λ
.

Figure 1.2: Example of deSitter embedding for 1 + 1-d deSitter space. The orange surface is the
2-d deSitter space and the blue line depicts the path of a observer on a geodesic who sits stationary
at a constant position.
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Chapter 2

The Unruh Effect

2.1 Introduction

From Einstein’s theory of Special Relativity we are used to the notion of physics being the same
in all inertial reference frames. That is, that the fundamental laws of physics are the same for
every observer moving at a constant velocity relative to one and other. What happens if we betray
Einstein and compare an inertial observer with a non-inertial (accelerating) frame; what effect will
we see? What laws of physics or fundamental concepts, we thought completely sound, cease to
hold?

The results of this are actually even more drastic then one might expect. This chapter seeks
to show that the entire concept of particles is an observer dependent quantity. In other words,
if a stationary observer, relative to some fixed origin, is sitting in what they perceive to be an
empty vacuum; completely devoid of particles. Then an accelerating observer passing by will not
see this same vacuum. Instead as will be shown, they will see space to have a Temperature T
proportional to their acceleration. This is the Unruh Effect As one might expect the constants of
proportionality of this temperature make it so that one would have to have a large acceleration to
see such a temperature, hence why we do not see this at low energies. There is still debate as to
whether we have already seen experimental evidence of the Unruh effect.

2.2 Uniform Acceleration

Before deriving this effect, let us consider the setup for our thought experiment (see Figure 2.1). We
start by considering flat 1 + 1-dimensional Minkowski spacetime. That is one spatial dimension
and one temporal. Upon this we study the fluctuations of a massless scalar field ϕ and will
consider the quantization of this scalar field in terms of two co-ordinate systems. The first is the
regular Minkowski co-ordinates (t, x) that describe a stationary observer. The second set describe
constantly accelerating observers.

- 11 -



Quantum Aspects of Black Holes in de Sitter Spacetime Chapter 2. The Unruh Effect

Figure 2.1: Accelerating observer in a Minkowski diagram approaching the speed of light.

As is shown in Appendix A.1, an observer with a constant acceleration a and proper time τ ,
moves in Minkowski space with:

t(τ) =
1

a
sinh(aτ)

x(τ) =
1

a
cosh(aτ)

We can generalize these to the so-called “Rindler co-ordinates” (η, ξ), which are related to (x, t)
via:

t =
1

a
eaξ sinh(aη) (2.1)

x =
1

a
eaξ cosh(aη) (2.2)

In these co-ordinates constant accelerating observers (with acceleration α) have ξ(τ) = 1
a
ln( a

α
) and

η(τ) = α
a
τ (τ their proper time). So for α = a, these reduce to the A.2 and A.3 and have ξ = 0

and η = τ . These are basically the co-ordinates of an accelerated frame.
The metric in these co-ordinates is, from A.4:

ds2 = e2αξ
[
−dη2 + dξ2

]
(2.3)

Letting η and ξ range from −∞ < η, ξ < ∞, only covers a portion of the spacetime, as we can
see from 2.2, since coshαη, eαξ > 0 =⇒ x ≥ 0 for all ξ and η. This is shown in Figure 2.2
. This portion is called Region I. This region contains all accelerating observers with a > 0 and
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hyperbolic center at the origin. Any other observers accelerating the opposite direction a < 0 will
be restricted to region II.

Figure 2.2: Minkowski diagram showing Rindler co-ordinates, Hyperbolics are lines of constant η
and straight lines are lines of constant ξ. These co-ordinates only cover Regions I and II

This requires the introduction of a second set of co-ordinates to cover this other region of space:

t = −1

a
eaξ sinh(aη) (2.4)

x = −1

a
eaξ cosh(aη) (2.5)

These result in the same metric above 2.3. Note that while the sign in front of the t co-ordinate
is not necessary to cover the right spacetime wedge , it is necessary to result in the same metric.

As we will see, the Unruh affect is dependent on having both of these sets of co-ordinates 2.1 ,
2.2 and 2.4 , 2.5. It is important to cover all of Minkowski space, so that later when we can equate
our two formulations of the same scalar field ϕ.

2.3 Expansion in Rindler Co-ordinates

The next to quantize the scalar field ϕ in the Rindler co-ordinates, in order to see what the field
ϕ looks like from the perspective of an accelerating observer. It is expected that like in the flat
space case, there will be some modes gk that obey the Klein-Gordan equation and that ϕ can be
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expressed as a linear combination of these modes. Subsequently when the field is quantised, we
find that these coefficients bk must satisfy the commutation relations of the annihilation operators
1.6.

This requires the solving of the massless Klein-Gordon equation □ϕ = ∂µ∂
µϕ = ∂µg

µν∂νϕ = 0.
Using the form of gµν shown in A.4 we can see that □ϕ = 0 then takes the form:

□ϕ = e−2αξ
(
−∂2η + ∂2ξ

)
ϕ = 0

=⇒
(
−∂2η + ∂2ξ

)
ϕ = 0 (2.6)

Therefore it is clear that in the Rindler co-ordinates the solutions to the KG equation are the same
as they are in Minkowski co-ordinates. The solutions 1.3 can therefore be used, as they are just
plane waves, so the modes take the form:

gk =
1√
4πωk

e±iωkη±ikξ

Where for a massless scalar field ωk = |k| > 0.
However, recall that we need to be careful about what region of space time we are talking

about as our co-ordinates transformations take two different forms in the two regions I and II. To
account for this we define two sets of modes: g

(1)
k (defined to be the modes in region I) and g

(2)
k ,

(defined to be the modes in Region II).
To have proper modes they must have positive frequency with respect to the future directed

time-like killing vector. Appendix A.1.3 shows that the future directed time-like killing vector in
Region I is ∂η and in Region II is ∂−η. However, a mode gk is said to have “positive frequency”
with respect to a given vector X if Xgk = −iωkgk. This means the two sets of modes take the
form:

g
(1)
k =

{
1√
4πωk

e−iωkη+ikξ Region I

0 Region II
(2.7)

g
(2)
k =

{
0 Region I

1√
4πωk

e+iωkη+ikξ Region II
(2.8)

Here each mode must be defined to be 0 in each others regions so that it remains okay to use the
two different relations between (x, t) and (η, ξ). Otherwise a mode is not positive frequency with
respect to a future directed time-like Killing vector. As can be verified, the signs in the exponential
have been chosen such that:

∂ηg
(1)
k = −iωkg(1)k

∂−ηg
(2)
k = −iωkg(2)k

Meaning these are positive frequency modes across both Rindler regions.
With this it is possible to write down the entire scalar field expanded over these modes. The

coefficients of these modes will be creation and annihilation operators. These are denoted b
(1,2)
k as

we have two sets of modes to cover both Rindler wedges. We also need to include the complex
conjugates of these modes for completion.

ϕ =

∫ ∞

−∞
dk
[
b
(1)
k g

(1)
k + b

(1)†
k g

(1)∗
k + b

(2)
k g

(2)
k + b

(2)†
k g

(2)∗
k

]
(2.9)
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These 4 modes cover not only the two Rindler wedges (Regions I & II) but can also be extended
to cover the entire Minkowski space. This appears strange as these modes have been written
explicitly in terms of η and ξ which in their full range only cover Regions I & II, but what we can
do is analytically extend these modes with complex values if η and ξ to suitable cover all of the
space. In appendix A.1.5 it is shown that these modes are appropriately normalized with respect
to the KG inner product.

2.4 Extension to Minkowski modes

It has been shown how a scalar field ϕ can be expressed in terms of two sets of co-ordinates,
Minkowski 1.3 and Rindler 2.9, that describe two different types of observers, stationary and
accelerating. We have seen that in each case the modes that ϕ is expanded over are different and
thus have different creation and annihilation operators. This motivates the question of how the
Rindler vacuum might differ from the Minkowski one. Recall that a Rindler observer (in Region

I) will observe a state |0R⟩ to be a vacuum or devoid of particles if b
(1)
k |0R⟩ = 0. Similarly the

same was done for the Minkowski vacuum, describing it as the state |0M⟩ where ak |0M⟩ = 0.
The question we want to ask is then, if we instead act the annihilation operator in the Rindler
expansion on the Minkowski vacuum b

(1)
k |0M⟩, what do we get? As we will see later the result is

non-zero meaning that from the perspective of a Rindler observer the Minkowski vacuum is not
empty.

To calculate b
(1)
k |0M⟩ one approach would be to try to find the appropriate form of |0M⟩ and

seeing what the operation of b
(1)
k does to it. A faster way would be find some way of expressing b

(1)
k

in terms of the Minkowski creation and annihilation operators ak and a†k, after which the action

of b
(1)
k on |0M⟩ would follow. This is the approach we will now take.

Starting with the relations in Region I, 2.1 and 2.2, by linear combinations exponentials of η
and ξ can be constructed:

a(x− t) = eaξe−aη = ea(ξ−η) (2.10)

a(x+ t) = eaξeaη = ea(ξ+η) (2.11)

This can also be done in Region II using relations 2.4 and 2.5:

a(−x+ t) = eaξe−aη = ea(ξ−η) (2.12)

a(−x− t) = eaξeaη = ea(ξ+η) (2.13)

From these relations the Rindler modes can be expressed in terms of x and t. But first our modes
must be split into Right and Left moving modes. This can be achieved by writing the modes in
light-cone co-ordinates, ũ = η − ξ and ṽ = η + ξ. This essentially separates out the modes into
two groups classified by k > 0 and k < 0. This then produces g

(1)
k = g

(1)
L (k) + g

(1)
R (k), where:

g
(1)
R (k) = Θ(k)g

(1)
k (2.14)

g
(1)
L (k) = Θ(−k)g(1)k (2.15)
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This way the integral expansion 2.9 takes the form:

ϕ =

∫ ∞

0

dk
[
b
(1)
k g

(1)
R (k) + b

(1)†
k g

(1)∗
R (k) + b

(2)
k g

(2)
R (k) + b

(2)†
k g

(2)∗
R (k)

]
+

∫ 0

−∞
dk
[
b
(1)
k g

(1)
L (k) + b

(1)†
k g

(1)∗
L (k) + b

(2)
k g

(2)
L (k) + b

(2)†
k g

(2)∗
L (k)

]
(2.16)

Now by examining form of these modes it is possible to see if they can be related to 2.10 and
2.12. We will start by examining the right moving modes with k > 0 but it will be clear that the
discussion will be similar for left moving modes. Recall that ωk = |k|, so for k > 0, ωk = k ≡ ω,
so using 2.7 and 2.10:

√
4πωg

(1)
R (k) = eiω(ξ−η) = (ax− at)

iω
a

= a
iω
a (x− t)

iω
a (2.17)

This is good, the mode is expressed purely in x and t, but it does not cover all of Minkowski space.
To achieve this modes from Region II must be included. Let us see what g

(2)
R (k) looks like:

√
4πωg

(2)
R (k) = eiω(ξ+η) = (−ax− at)

iω
a

= a
iω
a (−x− t)

iω
a (2.18)

This is not quite the same as what we had for g
(1)
R (k), so they cannot be combined. The next most

obvious step would be to try use g
(2)∗
R (k), but this changes both of the signs of x and t, where

as we only want to change the sign of x. Instead by taking the complex conjugate and reversing
the sign of k we indeed get what we need. However, flipping the sign of k means using a negative
value, meaning it is necessary to use one of the left moving modes. Since these are only defined
for k < 0, they must be evaluated at g

(2)∗
L (−k). To show this works, the following can be written

using ω = k > 0:

√
4πωg

(2)∗
L (−k) = e−iω(−ξ+η) = (−ax+ at)

iω
a

= (−1)
iω
a a

iω
a (x− t)

iω
a (2.19)

In appendix A.1.6 it is shown that the two modes g
(1)
R (k) and g

(2)∗
L (−k) do not overlap and cover

the entire spacetime as intended 1, this means we can write them down as a combination:

√
4πω

(
g
(1)
R (k) + (−1)−

iω
a g

(2)∗
L (−k)

)
= a

iω
a (x− t)

iω
a (2.20)

From this expression here the “analytic extension” discussed earlier is clear, this expression is
simply used for all values of t and x in Regions III and IV. It is not necessary to say what values
of ξ and η they correspond to.

Similarly for Region II the same procedure can be carried out to get modes of the same form
as 2.18:

√
4πω

(
g
(2)
R (k) + (−1)−

iω
a g

(1)∗
L (−k)

)
= a

iω
a (−x− t)

iω
a (2.21)

1Note that we have not stated the value of (−1)
iω
a as there are multiple choice, we choose one of these later in

section 2.5.1
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These are also non-overlapping and cover all of spacetime. This discussion has been for right
moving modes, the exact same procedure can be done for left moving modes. Here ωk = |k|, so
for k < 0; ωk = −k ≡ ω:

√
4πωg

(1)
L (k) = eiω(−ξ−η) = (ax+ at)−

iω
a

= (−1)−
iω
a a−

iω
a (−x− t)−

iω
a

Taking inspiration from the construction of g
(1)∗
k a relation of the same form can be constructed:

√
4πωg

(2)∗
R (−k) = e−iω(ξ+η) = (−ax− at)−

iω
a

= a−
iω
a (−x− t)−

iω
a

The same idea holds for g
(2)
L so the two combinations can be written as:

√
4πω

(
(−1)

iω
a g

(1)
L (k) + g

(2)∗
R (−k)

)
= a−

iω
a (−x− t)−

iω
a (2.22)

and

√
4πω

(
(−1)

iω
a g

(2)
L (k) + g

(1)∗
R (−k)

)
= a−

iω
a (x− t)−

iω
a (2.23)

We can then recognize these as complex conjugates of 2.21 and 2.20 respectively. This means 2.20
and 2.21 are modes that cover all of Minkowski space for all values of k, so we can combine 2.20
and the conjugate of 2.23 to write:

√
4πω

(
g
(1)
k + (−1)−

iω
a g

(2)∗
−k

)
= a

iω
a (x− t)

iω
a (2.24)

And similarly, 2.21 and the conjugate of 2.22 to write:

√
4πω

(
g
(2)
k + (−1)−

iω
a g

(1)∗
−k

)
= a

iω
a (−x− t)

iω
a (2.25)

The combinations 2.24 and 2.25, along with their complex conjugates always need to be in-
cluded, then give enough to expand our scalar field ϕ over all of space time. This expansion takes
the form:

ϕ =

∫ ∞

−∞
dk
[
c
(1)
k h

(1)
k + c

(1)†
k h

(1)∗
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)∗
k

]
(2.26)

Where the modes h
(1,2)
k are defined as:

h
(1)
k =

1√
1− e−

2πω
a

[
g
(1)
k + (−1)

iω
a g

(2)∗
−k

]
(2.27)

h
(2)
k =

1√
1− e−

2πω
a

[
g
(2)
k + (−1)

iω
a g

(1)∗
−k

]
(2.28)

Where the factor of A(ω) = 1√
1−e−

2πω
a

is for normalisation, which is derived in Appendix A.1.7.
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2.5 “Good” Minkowski Modes

The modes that have just been constructed are orthonormal and cover all of spacetime. But how
do we know that these are appropriate Minkowski modes?. “Good” modes are ones which are
positive frequency with respect to a future directed time-like killing vector. This, for example,
rules out our Rindler modes 2.7 and 2.8 as we is showed in Appendix A.1.3 the future directed
time-like killing vector is different in the two Regions I and II. This means there is no way for a
single Rindler mode to be written in terms of positive frequency Minkowski modes. What will
now be shown is that the combinations 2.20 and 2.21 are in fact made of combinations of positive
frequency Minkowski modes.

As a reminder let us consider the Minkowski modes. In 1.3 we had that the scalar field can be
expanded over the modes2:

ϕ =

∫ ∞

−∞
dp
[
âpe

−iλpt+ipx + â†pe
iλpt−ipx

]
(λp = |p|)

=

∫ ∞

0

dp
[
âpe

−ip(t−x) + â†pe
ip(t−x)]+ ∫ 0

−∞
dp
[
âpe

ip(t+x) + â†pe
−ip(t+x)]

The integration variable in the second integral is then changed from p → −p, however, since this
is for p < 0, which means λ = |p| = −p, then this is just changing the integration variable to λ,
while in the first integral λ = |p| = p. These two integrals can be combined to give:

=

∫ ∞

0

dλ
[
âpe

−iλ(t−x) + â†pe
iλ(t−x) + âpe

−iλ(t+x) + â†pe
iλ(t+x)

]
=

∫ ∞

0

dλ
[
âpe

−iλu + â†pe
iλu + âpe

−iλv + â†pe
iλv
]

(2.29)

These are the right and left moving modes in Minkowski co-ordinates.
Now we need to analyze the RHS of 2.20 and 2.21 as complex functions. This is made clear by

writing these modes in terms of the light-cone co-ordinates3 v = t + x and u = t − x . Then by
considering the Fourier transforms of these functions:

a
iω
a (x− t)

iω
a = a

iω
a (−u)

iω
a =

1

2π

∫ ∞

−∞
h̃(λ)e−iλudλ (2.30)

a
iω
a (−x− t)

iω
a = a

iω
a (−v)

iω
a =

1

2π

∫ ∞

−∞
h̃(λ)e−iλvdλ (2.31)

We can notice that if it happened to be the case that for λ < 0, h̃(λ) = 0. Subsequently these
modes would in fact be sums of positive frequency Minkowski modes. Using some complex analysis
it will now be shown that this is indeed the case for (x− t)

iω
a and (−x− t)

iω
a .

2Here we use the notation of p being momentum and λp = |p| the frequency for the Minkowski co-ordinates to
distinguish from the Rindler momentum k and frequency ωk.

3We can see from this that the ability of these modes to be written in terms of light-cone co-ordinates is the key
factor that lets us construct proper Minkowski modes
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2.5.1 Complex Analysis Trick

We begin by stating the following theorem (See theorem 19.2 of [16]):

A function is a combination of only positive frequency modes iff as a

complex function it is analytic and bounded in the lower half complex plane.

Why this theorem is true is discussed in appendix A.1.8. The theorem provides that if as a complex
functions 2.20 and 2.21 are analytic and bounded in the lower half complex plane then they must
be combinations of only positive frequencies, i.e. h̃(λ) = 0, ∀ λ < 0. This is all that is needed to
prove these are “good” modes. This begins by writing the 2.20 in the following way. Following [9]
we notice that 2.21 is essentially the same function with u↔ v:

a
iω
a (−u)

iω
a = a

iω
a ei

ω
a
ln(−u)

Now since this considers u as a complex number, there is the issue that the function ln(−u) is
multi-valued. To fix a branch cut is applied and hence the way in which we rotate around the
origin is picked. Since we are interested in just the real parts of u and the lower half plane it
suffices to say that we want to pick the branch cut in the upper half plane. We can expand ln(−u)
in polar co-ordinates as follows:

ln(−u) = ln | − u|+ iθ + i(2k − 1)π (2.32)

Here, ln | − u| is the single valued natural log that acts on real numbers, as the magnitude of u is
real. θ is the angle of u in the complex plane and it is the i(2k + 1)π that gives this function its
multi-valued nature. Note we are used to seeing this as 2kπ, i.e. an addition of an even multiple
of π since k ∈ Z. However, the analytic function chosen is expected to have Ln(1) = 2nπ (n ∈ Z),
which happens when u = −1, since in this case it is the lower half complex plane we are interested
in. This corresponds to |u| = | − 1| = 1 and θ = −π4, in polar co-ordinates. This results in
ln(1) = ln |1| − iπ + i(2k − 1)π = ((2k − 1) − 1)π = 2(k − 1)π = 2nπ (setting n = k − 1), which
would not be the case if an even multiple was chosen for addition.

With this established the simplest case k = 0 is then chosen, so that our single valued function
is:

Ln(−u) = ln | − u|+ i(θ − π), θ ∈ (−3π

2
,
π

2
) (2.33)

With this choice of restriction on θ it is clear that the branch cut is along the imaginary axis in
the upper half complex plane as needed. With this choice it is possible to check that:

a
iω
a ei

ω
a
ln(−u) = a

iω
a ei

ω
a
[ln |−u|+i(θ−π)]

Is now clearly bounded in the lower half plane as ei
ω
a
ln |−u| is purely oscillatory and ei

ω
a
i(θ−π) is

bounded as θ is bounded. Finally a version of ln(−u) has been constructed that is analytic. As
well as this the exponential function is analytic, and the composition of analytic functions is itself
an analytic function. Hence, we have function that is analytic and bounded in the lower half

4This means rotation is clockwise through the complex plane, θ = π would be a anti-clockwise rotation in the
upper half plane.
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complex plane. This is all we needed to confirm that the h
(1,2)
k are “Good” Minkowski modes as

they are functions of positive frequency modes only.

As a final note, it is clear that the choice made to get a single valued log in 2.33 helps avoid an
ambiguity. In 2.20 and 2.21 we have the factor (−1)−

iω
a which can now be calculated using 2.33:

(−1)−
iω
a = e−i

ω
a
Ln(−1) = e−i

ω
a
[ln |−1|+i(0−π)] (u, v = 1 =⇒ θ = 0)

= e−
πω
a (2.34)

2.6 Unruh Temperature

At this point almost everything needed to perform the calculation is accounted for. Recall as
discussed in 2.4, what we are looking for is a relation between the the Rindler b

(1)
k and Minkowski

ck creation and annihilation operators. This can be achieved by expanding the same scalar field ϕ
over the Rindler modes as in 2.9 and the newly constructed Minkowski modes in 2.26:

ϕ =

∫ ∞

−∞
dk
[
b
(1)
k g

(1)
k + b

(1)†
k g

(1)∗
k + b

(2)
k g

(2)
k + b

(2)†
k g

(2)∗
k

]
=

∫ ∞

−∞
dk
[
c
(1)
k h

(1)
k + c

(1)†
k h

(1)∗
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)∗
k

]
=

∫ ∞

−∞

dk√
1− e−

2πω
a

[
c
(1)
k

(
g
(1)
k + e−

πω
a g

(2)∗
−k

)
+ c

(1)†
k

(
g
(1)∗
k + e−

πω
a g

(2)
k

)
+c

(2)
k

(
g
(2)
k + e−

πω
a g

(1)∗
−k

)
+ c

(2)†
k

(
g
(2)∗
k + e−

πω
a g

(1)
−k

)]
The KG inner product A.7 can be used to isolate the creation and annihilation operators. From
the first expansion of ϕ it is clear that (g

(1)
k′ , ϕ) = b

(1)
k′ , but if this calculated using the second

expansion we see that:

b
(1)
k′ = (g

(1)
k′ , ϕ) =

1√
1− e−

2πω
a

(
c
(1)
k δ(k − k′) + e−

πω
a c

(2)†
k δ(k + k′)

)
=

1√
1− e−

2πω
a

(
c
(1)
k′ + e−

πω
a c

(2)†
−k′

)
(2.35)

Where relations A.8 and A.9 have been used. Similar identifications can be made for the other
operators.

Now we are able to perform the calculation. Returning to our opening thought experiment we
have a Rindler observer accelerating in Region I of the space time and we want to know what this
observer would see if they accelerated through a Minkowski vacuum |0M⟩. What they “see” can
be quantified by the expectation value of the particle number operator, which in this Region is
just ⟨Nk⟩ = ⟨0M | b(1)†k b

(1)
k |0M⟩. Then using our above calculated 2.35 and remembering that since

the h
(1,2)
k modes are perfectly valid Minkowski modes, then the creation and annihilation operators

c
(1)
k and c

(1)†
k interact regularly with the Minkowski vacuum |0M⟩, in that c

(1)
k |0M⟩ = ⟨0M | c(1)†k = 0.
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This means:

⟨Nk⟩ = ⟨0M | b(1)†k b
(1)
k |0M⟩

=
1

1− e−
2πω
a

⟨0M |
(
c
(1)†
k + e−

πω
a c

(2)
−k

)(
c
(1)
k + e−

πω
a c

(2)†
−k

)
|0M⟩

=
e−

2πω
a

1− e−
2πω
a

⟨0M | c(2)−kc
(2)†
−k |0M⟩

Then seeing as c
(1)
k and c

(1)†
k satisfy the commutation relations 1.6, we must have that, ⟨0M | c(2)k c

(2)†
k |0M⟩ =

⟨0M | [c(2)k , c
(2)†
k ] + c

(2)†
k c

(2)
k |0M⟩ = δ(0) ⟨0M | |0M⟩ = δ(0):

⟨Nk⟩ =
δ(0)

e
2πω
a − 1

(2.36)

This divergent factor is due to the fact that we are considering the volume of an unbounded space.
If instead this calculation was repeated in a finite box, the momenta k would be discrete and the
factor δ(0) would be equal to the volume V . This can be seen from the fact that the delta function
arises from δ(k− k), where k is the momentum. If this is expanded through the integral definition
of the delta function, which must be an integral over space as that is the conjugate of momentum:

δ(0) =

∫
V

eix(k−k)dx =

∫
V

dx = V

Where we are still in one spatial dimension so the volume is a length, but the result holds in
higher spatial dimensions. What we should really concern ourselves with is the number density of
particles defined as:

⟨nk⟩ =
⟨Nk⟩
V

=
1

e
2πω
a − 1

(2.37)

This is the occupancy number for a Planck distribution with temperature:

T =
a

2π
(2.38)

So an accelerating observer will see the Minkowski vacuum as a thermal bath with a temperature!
Returning to SI units and restoring the factors we get that this temperature is:

T =
ℏa
2πck

≃ 4.055× 10−21a [K]

For any reasonable value of acceleration (must be in m/s2 ) this temperature is tiny, hence why it
has been so hard to experimentally detect.
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Chapter 3

Hawking Radiation

3.1 Introduction

The Unruh affect, while in flat spacetime teaches an important lesson about QFT in curved space-
time, that being that the idea of the “vacuum” and “particles” are observer dependent quantities
rather than fundamental concepts [6]. Hawking Radiation as will be shown is a similar phe-
nomenum. Here, two different notions of a vacuum arise, due to their natural co-ordinates being
different. This time however, the difference in co-ordinate systems arises, not just because one
observer is accelerating, but due to the geometry of spacetime as the presence of a black hole gives
rise to an event horizon.

The approach taken for the Unruh affect made use of the ease of calculation in directly con-
structing Minkowski modes and the ability to show that they are “good” positive frequency modes
that cover all of spacetime. In the case of the Hawking radiation, this is not so easy. So a
more general approach will have to be taken that will rely on some tricks to get around direct
calculations.

The scenario we will be considering is the same as Hawking in his original paper [13]. This
scenario consists of a massless scalar field in the classical spacetime background of a spherically
symmetric dust cloud that collapses to form a Schwarzschild black hole. It will be found that if no
particles were present at past infinity, (i.e. there was a vacuum), then a distant observer at future
infinity will observe a spectrum of particles, owing to the fact that the spacetime close to the black
hole, where the particles appear to come, has a different notion of a vacuum to past infinity.

3.2 Wave equation

In flat space-time the wave equation □φ = 0 was utilized, for our massless scalar field1. In order to
generalize this to curved space time we need to look at the Lagrangian. The scalar Klein Gordon
field was discussed in 1.1.1. These KG fields satisfy the KG equation 1.1, which has the following

1Note in this section we use φ to refer to the scalar field to avoid confusion with the azimuthal angle ϕ.
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corresponding Lagrange density:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (3.1)

It can then be recalled that in order for a theory to be transported to curved space time, two
things need to happen. First we need to make sure that our Lagrangian is a scalar. That is, it is
invariant under co-ordinate transformations, that may have different determinants of the metric
g. We showed in section 2 that in order for the volume element to transform like a tensor we need
to multiply it by

√
|g|. This means in the action we have:

S =

∫
Ldnx→

∫ √
|g|Ldnx

When we translate to curved spacetime. Note that in the Minkowski case
√
|g| = 1 and the

Lagrange density is the same as above 3.1. The second thing we need to do in curved spacetime
is to take our laws of physics in flat spacetime and replace the partial derivatives with co-variant
derivatives. This makes the equations tensor equations and means they account for any curvature
of space. This means our Lagrange density becomes2:

L =
1

2

√
|g|
(
gµν∇µφ∇νφ−m2φ2

)
(3.2)

We show in appendix B.1.5 that in curved space-time the equations of motion for the action with
a Lagrange density L, varied with respect to a scalar field φ are:

∂L
∂φ

− ∂µ

(
∂L

∂ (∇µφ)

)
= 0

We can easily then compute from 3.2 that ∂L
∂φ

= −
√
|g|m2φ and ∂L

∂(∇σφ)
=
√

|g|gµν∇µφδ
σ
ν =√

|g|gµσ∇µφ. Which mean the EoM are:

1√
|g|
∂σ

(√
|g|gµσ∇µφ

)
−m2φ = 0 (3.3)

It can be shown (see appendix B.1.6) that this first term is equal to:

1√
|g|
∂σ

(√
|g|gµσ∇µφ

)
= gµν∇µ∇νφ ≡ □φ

So we can see with this extension of the definition of the □ operator to gµν∇µ∇ν
3 we get the same

EoM for a massless scalar field that we had in flat space-time □φ = 0.

2Note that we are choosing the case of minimal coupling, meaning there is no term linking φ to the Ricci scalar
R, so no back reaction of the field on the metric.

3You can see this is indeed an extension, as in the absence of curved spacetime this reduced to partial derivatives
as normal.
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3.2.1 Schwarzschild Wave Equation

We can now plug in the Schwarzschild solution 1.7 into 1√
|g|
∂σ

(√
|g|gµσ∇µϕ

)
= 0. Using the fact

that the determinant of the metric is g = −r4 sin2 θ, term by term this is:

∂t

(
− ∂tφ(

1− 2M
r

))+
1

r2
∂r

(
r2
(
1− 2M

r

)
∂rφ

)
+

1

sin θ
∂θ

(
sin θ

r2
∂θφ

)
+ ∂ϕ

(
1

r2 sin2 θ
∂ϕφ

)
= 0

We can recognize that the last two terms give us the familiar angular equation for the spherical
harmonics. This motivates us to make the ansatz:

φ =
1

r
f(r, t)Yℓm(θ, ϕ) (3.4)

Where we have added the factor of 1/r is added to make things simpler. We can then plug this in
to our wave equation:

− Yℓm

r
(
1− 2M

r

)∂2t f +
Yℓm
r2

∂r

(
r2
(
1− 2M

r

)
∂r

[
f

r

])
+
f

r3
∇2
θ,ϕYℓm = 0 (3.5)

Where ∇2
θ,ϕ = 1

sin θ
∂θ (sin θ∂θ) +

1
sin2 θ

∂2ϕ. The spherical harmonics satisfy:

∇2
θ,ϕYℓm = −ℓ(ℓ+ 1)Yℓm (3.6)

Where ℓ is the angular quantum number, ℓ must be a non-negative integer and −ℓ ≤ m ≤ ℓ. In
appendix B.2.1 we show that when we use the tortoise co-ordinate r∗ 1.10, 3.5 reduces to:

− ∂2t f + ∂2r∗f −
(
1− 2M

r

)(
2M

r3
+
ℓ(ℓ+ 1)

r2

)
f = 0[

−∂2t + ∂2r∗ − V (r)
]
f = 0 (3.7)

We will see when we go too look at the radiation from the black hole the two ranges of r we will be
interested in, will be r >> 2M and r ∼ 2M . In both cases we can see that, V (r >> 2M) = 0 as
the 1

r3
and 1

r2
vanish, and V (r ∼ 2M) = 0 as here

(
1− 2M

r

)
≈ 0. This means in the two regimes of

interest, when using the tortoise co-ordinate r∗, the solutions to the the wave equation, for f(t, r∗),
are just plane waves.

3.3 Hawking’s Calculation

We will now proceed to outline Hawking’s original calculation [15]. The setup we will be describing
is shown in a Penrose diagram in Figure 3.1. As outlined before what we will be measuring is the
spectrum of particles that appear at future null infinity, which is denoted I + in Figure 3.1. In
the conformal Penrose diagram light rays still travel at 45◦ 4. Hawking used this fact to trace a
light ray backwards in time, starting at some point on future null infinity I + back to r = 0, where
the light ray bounced of the center of the star and traveled all the back to some point past null
infinity I −. This path is denoted by the co-ordinate v as can be seen in 3.1. The latest possible
path is denoted by v0, this path traces out the event horizon at r = 2M before propagating to
future time-like infinity.

4By “light rays travel at 45◦” we mean lines of constant phase are always at 45◦. In appendix A.1.6 we outlined
that lines of constant phase represent the direction the waves are traveling in
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Figure 3.1: Penrose diagram of the collapsing star. Curved line shows the exterior of the collapsing
star. Line labeled v0 is the latest possible light ray that could escape the collapsing body, this is
at r = 2M , v is the general light ray that escapes. i+(−) is future (past) time-like infinity, i0 is
spatial infinity and I +(−) is future (past) null infinity. 6

3.3.1 Field Expansion In The Past

We now want to figure out how the fields can be expanded in the two limits we are interested
in. The first limit is far outside the collapsing body in the past (close to I −). This is where we
expect the incoming ray to come from. Here, the scalar field φ that we will be talking about is only
comprised of ingoing solutions. This is because these modes are the only modes that can reach the
black hole and become relevant for the thermal spectrum from the black hole. The outgoing modes
on I − never near the black hole. As outlined in 1.2.7 these ingoing modes are characterized by
having constant v = t + r∗. We can then write down the positive frequency modes of energy ω,
which we know from the ansatz 3.4 and the wave equation 3.7, will asymptotically take the form:

fω ∝ 1

r
√
ω
e−iωvYlm
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Where we have added the 1/
√
ω as we expect the normalization via the scalar product to involve

such a factor, but we have neglected the overall normalization factor as it is constant and unnec-
essary for or following procedure. We can then expand the the scalar field φ over these modes,
for all frequencies. Note that we can use frequency here as our integration variable instead of the
momenta k as we are only dealing with inward moving modes, which have k < 0, so there is no
ambiguity about ω = ±|k|. This means φ takes the form:

φ =

∫ ∞

0

dω
[
aωfω + a†ωf

∗
ω

]
(3.8)

Where the coefficients aω and a†ω are interpreted as creation and annihilation operators on I −, as
long as the modes are normalized with the KG inner product A.7, with (fω, fω′) = δ(ω − ω′).

3.3.2 Cauchy Horizons

When talking about where particular modes of a field come from or where they are defined, it is
often useful to talk about a Cauchy surface. A Cauchy surface is a surface which intersects every
past and future causal curve. For time like curves it must only possible to intersect once. This is
important for defining our fields as if we want to form a complete set of mode solutions, we need to
be able to define their boundary conditions for all possible time-like and null paths. This condition
is satisfied by a defining the boundary conditions on a Cauchy surface! As every time-like or null
curve must intersect it.

3.3.3 Field Expansion In The Future

This understanding of Cauchy surfaces raises an issue for the defining of our scalar field φ in the
far future. We are unable to simply use I + to define the boundary conditions of our modes as we
did with I − as due to the presence of the black hole, I + is not a Cauchy horizon as there are
now time-like and null paths which enter the black hole and never end up on I +. This means in
order to construct a proper basis we need to consider the Cauchy horizon I + ∩H+, where H+ is
the black hole horizon denoted with r = 2M in 3.1.

It is then clear to us that it is the modes that end up on I + are outgoing modes characterized
by u and the modes that end up on H+ are ingoing modes characterized by v. This means for
the future expansion we need two sets of modes. Let us use pω to denote outgoing modes and qω
for ingoing modes. With this we can expand our scalar field φ over this basis, once again using
frequency ω as our integration variable:

φ =

∫ ∞

0

dω
[
bωpω + cωqω + b†ωp

∗
ω + c†ωq

∗
ω

]
(3.9)

Since pω are the modes that propagate to I +, it is the expression of these modes in terms of
the past modes on I −, fω and f ∗

ω, that we are interested in. As these lead to the thermal emission
spectrum. Since the pω modes are outgoing, they are characterized by having constant u. This
means asymptotically on I +, these modes take the form:

pω ∝ 1

r
√
ω
e−iωuYlm

We will now go on to see how we can compare these modes to the modes of the past.

6Note that the fact that the star appears to come from a single point in the far past is an artifact of the conformal
mapping.
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3.3.4 Comparison Of u and v

The question we need to answer is how the vacuum in the far past, outside the collapsing body
compares to the vacuum in the far future far from the collapsed black hole. We can recall that for
the Unruh affect the way we quantify this is by calculating the expected particle number, which
may not vanish for the annihilation operators of the far future. To check that this holds for the
black hole case we need way of comparing the modes in the future with the modes in the past. To
do this we follow what Hawking did as mentioned earlier. If we trace the path of a null geodesic,
from I + back to where it bounced of r = 0, and back out to I −. We can see that the geodesic
started out as an incoming mode characterized by a certain value of v, but after bouncing of the
center of r = 0 it becomes and outward traveling mode characterized by having a constant u.
What we need then to know is how these values of v and u are related.

To do this the natural approach is to lean on our diagram in Figure 3.1. From this diagram it
may appear that these distances are the same and that simply u(v)− u(v0) = v − v0

7. However,
this will give us the wrong result as due to the different curvature of space-time in these regions
we have to measure distances differently. To appropriately compare distance we need to measure
the paths affinely. In principle we can parametrize a curve in space-time by any monotonically
increasing function, however there is only a certain subset of these parameterizations that also
preserve the geodesic equation that make these curves geodesics. The affine parametrization in
the past far from the collapsing body may not be the same as that close to the black-hole’s horizon.

Figure 3.2: the

To find out what the two affine parameterizations are we need to solve the geodesic equation, in
the two regions. The first region, in the future close to the black hole. For this calculation we can
make use of the Eddington Finkelstein co-ordinates, as we are measuring the separation of u(v)
from the horizon, the line of measurement will be along an ingoing null geodesic with v = const.
This is shown in Figure 3.2. This means in the co-ordinate system xµ = (u, v, θ, ϕ) described in
1.2.7, we will have v, θ, ϕ constant and only u will vary. With this we can see that the tangent

7We can immediately see that this is wrong as although v0 will be some finite value for the incoming geodesic,
since u(v0) is on the horizon r = 2M , it cannot be finite, since u(v0) must blow up as u(r = 2M) → ∞.
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vector to our curve parametrized by the affine parameter λ is V µ = dxµ

dλ
= (du

dλ
, 0, 0, 0) and satisfies:

∇V V
ν = V µ∇µV

ν = 0

=⇒ dxµ

dλ
∂µV

ν + V νΓνµσV
σ

=
d2xν

dλ2
+
dxµ

dλ
Γνµσ

dxσ

dλ
= 0

We can see that the since only dx0

dλ
= du

dλ
is non-vanishing, the only interesting one of these equations

is for ν = 0. This corresponds to:

d2x0

dλ2
+
dxµ

dλ
Γ0
µσ

dxσ

dλ
=
d2x0

dλ2
+
dx0

dλ
Γ0
00

dx0

dλ

The Christoffel symbol Γ0
00 = −1

2
f ′(r) is calculated in appendix B.2, where f(r) is defined in 1.7.

This means the geodesic equation results in the following differential equation for u, where we
denote differentiation wrt λ with a dot: u̇ = du

dλ
:

ü− 1

2
f ′(r)u̇2 = 0 (3.10)

If we want to solve this ODE we need to be careful as r will depend on λ, so f ′(r) is not a constant
along this geodesic. We can resolve this issue by finding some constants of the motion involving
r. From our discussion in section B.4.3, we know that if we have a geodesic xµ(λ) and the metric
has a killing vector ξ, then the scalar quantity ξµ

dxµ

dλ
, will be conserved. Since this is a scalar, this

must hold for all co-ordinate systems.
We can for instance take the Schwarzschild metric 1.7, which clearly is independent of of the

time co-ordinate t. This means as we discussed in section B.4.4, that the vector ξ = ∂t must be a
killing vector of this metric. This means along our geodesic xµ(λ), there is a constant:

ξµ
dxµ

dλ
= ξνgνµ

dxµ

dλ
= −f(r) dt

dλ
≡ −E = const

Where we have used the fact that the components of ξ must be ξν = δνt . We also know that by
definition this geodesic has v = t+ r∗ = const,which means we can write:

dv

dλ
=
dt

dλ
+
dr∗

dr

dr

dλ
=
dt

dλ
+

1

f(r)

dr

dλ
= 0

=⇒ dr

dλ
= −f(r) dt

dλ
= −E = const

This is a useful result that will now let us solve this ODE 3.10. If we let g = du
dλ

= u̇ we can write
3.10 as:

ü− 1

2
f ′(r)u̇2 =

dg

dλ
− 1

2

df

dr
g2 = 0

=⇒ dg

dλ

1

g2
=

1

2

df

dλ

dλ

dr
=⇒

∫
dg

g2
= − 1

2E

∫
df

=⇒ − 1

g
+ c = − 1

2E
f(r) =⇒ du

dλ
=

(
c− f(r)

2E

)−1

(3.11)
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We can fix this integration constant c by simply requiring that λ remain finite as we approach
r = 2M , (clearly this must be the case if dr/dλ = const) this way since we know u(r = 2M) = ∞,
then we must have that du

dλ
(r = 2M) = ∞. This can only happen for c = 0 as then f(r = 2M) = 0

and the whole term goes to ∞ as needed. So we have c = 0.

We can use the fact that dr/dλ = −E = const to write: r − 2M = −Eλ, which fixes λ(r =
2M) = 0. This lets us write:

1

f(r)
=

(
1− 2M

r

)−1

=

(
1− 2M

2M − Eλ

)−1

=
2M − eλ

−Eλ
= 1− 2M

Eλ

With this we can see that the ODE 3.11 is reduced to:

du

dλ
= − 2E

f(r)
= 2E − 4M

λ

=⇒ u = 2Eλ− 4M ln

(
λ

−C1

)
Where we have absorbed the constant of integration into the logarithm. C1 > 0, so that the
argument of the logarithm is positive, as λ < 0 (this can be seen as we must have that λ → 0−

if du/dλ is to go to +∞ on r = 2M). In the region close to the black hole, λ << 1 =⇒ u ≈
−4M ln

(
λ

−C1

)
. This means solving for the affine parameter, we have:

λ = −C1e
−u/4M

We can see that letting C1 = 1 gives us the Kruskal co-ordinates we had in 1.2.8! Meaning these
are the natural co-ordinates for describing geodesics near the event horizon.

In the second region in the past, far from the black hole, spacetime is approximately Minkowski.
This means the metric 1.13 reduces to ds2 = −dudv + r2dΩ2 so we can clearly see that in the co-
ordinate system xµ = (u, v, θ, ϕ) the Christoffel symbols with lower indices u or v will vanish as
the derivatives of the metric vanish for any indice involving u or v. This means for the ν = 1 = v
component, the geodesic equation, ẋµ∇µẋ

ν = 0, reads:

ẋµ∇µẋ
1 = ẋµ∂µẋ

1 =
dxµ

dλ

∂ẋ1

∂xµ
=
d2x1

dλ2
=
d2v

dλ2
= 0

=⇒ v = aλ+ b

We can fix the constant b by requiring that the ingoing null geodesic v0 which results in the
outgoing geodesic that co-insides with the horizon r = 2M , and since in this region we fixed λ = 0
this means that b = v0. With this we can finally we can equate the two affine parameters λ to get
our relation between u and v:

u(v) = −4M ln

(
v0 − v

C1C2

)
(3.12)

Where we have relabeled the constant a → C2 > 0. We do not need to specify these constants as
they do not impact the following calculation.
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3.4 Comparison Of Modes

We now are in a position to compare our modes in the past, far from the black hole, with the modes
in the future, close to the black hole, where outgoing particles appear to be created. Through 3.8
and 3.9 we have two sets of modes that we can expand our scalar field φ over. Then because these
modes satisfy the same equation □φ = 0 and are orthonormal sets we can express the modes in
terms of the other. This means the outgoing modes pΩ in terms of the ingoing modes fω

8, via:

pΩ =

∫ ∞

0

dω′ [αΩω′fω′ + βΩω′f ∗
ω′ ]

Since these two modes have the same dependence on 1/r and Ylm, as well as the same overall
normalization factors, we can ignore these and just write down:

1√
Ω
e−iΩu =

∫ ∞

0

dω′
√
ω′

[
αΩω′e−iω

′v + βΩω′eiω
′v
]

We can then multiply by 1
2π
e±iωv and integrate from −∞ to ∞ we find in the plus case:

1

2π

∫ ∞

−∞
dv

∫ ∞

0

dω′
√
ω′
αΩω′e−iv(ω∓ω

′) =

∫ ∞

0

dω′
√
ω′
αΩω′δ(ω ± ω′) =

{
αΩω√
ω

0

1

2π

∫ ∞

−∞
dv

∫ ∞

0

dω′
√
ω′
βΩω′eiv(ω±ω

′) =

∫ ∞

0

dω′
√
ω′
βΩω′δ(−ω ∓ ω′) =

{
0
βΩω√
ω

Meaning we can concisely write:

αΩω

βΩω

}
=

1

2π

√
ω

Ω

∫ v0

−∞
dve−iΩue±iωv

Note that we have changed the upper bound of the integral from∞ → v0, as although the functions
αΩω, βΩω are in principle not functions of u and v, we know physically they will have a cut off
relationship, where by they vanish for any geodesic with v > v0, as these cannot escape the black
hole. This change does not affect the above integrals as we only removed parts that were already
0. We can then use our relation between u and v from 3.12, to write:

αΩω

βΩω

}
=

1

2π

√
ω

Ω

∫ v0

−∞
dve±iωve

i4MΩ ln
(

v0−v
C1C2

)

We can then make a change of variables to s ≡ ∓(v − v0):

αΩω =
1

2π

√
ω

Ω
eiωv0

∫ ∞

0

dse−iωse
i4MΩ ln

(
s

C1C2

)

βΩω =
1

2π

√
ω

Ω
e−iωv0

∫ 0

−∞
dse−iωse

i4MΩ ln
(

−s
C1C2

)

We can now analyze these integrals in the complex plane. For αΩω we can see that the integrand
has no poles in the lower complex plane, so we can take as a contour a quarter circle that goes from

8Note from here on, we use ω to denote the frequency of the incoming solutions and Ω for the frequency of the
outgoing solutions.
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0 to +∞, then around in an arc to −i∞ and back to 0. The integral around this closed contour
must be 0 as there are no poles. Then seeing also that the integrand vanishes on the arc of the
quarter circle as e−iωs = e−iωRe(s)eωIm(s), which vanishes as Im(s) → −∞, the integral along the
negative portion of the imaginary axis must be the same as (minus) the integral along the positive
part of the real axis. This means we can makes the substitution s′ = is and get:

αΩω = − i

2π

√
ω

Ω
eiωv0

∫ 0

−∞
ds′eωs

′
e
i4MΩ ln

(
is′

C1C2

)

We can repeat the exact same procedure for βΩω, this time however, the quarter circle is on the
other side of the lower half complex plane. This is once again equal to the integral along the
negative portion of the imaginary axis. resulting in:

βΩω =
i

2π

√
ω

Ω
e−iωv0

∫ 0

−∞
ds′eωs

′
e
i4MΩ ln

(
−is′
C1C2

)

We then have to deal with the complex valued logarithm. To do this we can pick the standard
branch cut along the negative real axis, that is ln(z) = ln |z|+ iθ. This means:

ln

(
is′

C1C2

)
= ln

(
|s′|
C1C2

)
− iπ

2

ln

(
−is′

C1C2

)
= ln

(
|s′|
C1C2

)
+
iπ

2

Meaning we can write:

αΩω = − i

2π

√
ω

Ω
eiωv0e2MΩπ

∫ 0

−∞
ds′eωs

′
e
i4MΩ ln

(
|s′|

C1C2

)

βΩω =
i

2π

√
ω

Ω
e−iωv0e−2MΩπ

∫ 0

−∞
ds′eωs

′
e
i4MΩ ln

(
|s′|

C1C2

)

From which we have the nice result that:

|αΩω|2 = e8πMΩ|βΩω|2

This result can then be inserted into the frequency form of the relation B.18 (derived in appendix
B.3.1), with k = k′ and thus Ω = Ω′:∫ ∞

0

dω [αΩωα
∗
Ω′ω − βΩωβ

∗
Ω′ω] = δ(Ω− Ω′)

=⇒
∫ ∞

0

dω
[
|αΩω|2 − |βΩω|2

]
=

∫ ∞

0

dω|βΩω|2
[
e8πMΩ − 1

]
= δ(0) (3.13)

We show in appendix B.3.3 that the form of the expectation value of the number operator using
Bogolubov transformations is just the integral of |βΩω|2 over ω. This means we can manipulate
3.13 to get:

⟨NΩ⟩ =
∫ ∞

0

dω|βΩω|2 =
δ(0)

e8πMΩ − 1
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We can get rid of the δ(0) in the same manner that we did in section 2.6, by arguing that we have
been considering all of space and this divergence is related to the volume of space considered. The
physically meaningful quantity is the number density:

⟨nΩ⟩ =
⟨nΩ⟩
V

=
1

e8πMΩ − 1
(3.14)

This is once again the occupancy number for a Planck distribution with temperature:

T =
1

8πM
=

κ

2π

Where κ = 1/4M is the surface gravity of the Schwarzschild black hole.

- 32 -



Chapter 4

Anti-Evaporation

4.1 Introduction

We will now turn our attention to Raphael Bousso and Stephen W. Hawking’s 1997 paper titled
“(Anti-)Evaporation of Schwarzschild-de Sitter Black Holes” [3]. As the name suggests this paper
builds on Hawking’s previous work on the evaporation of black holes by analyzing the stability of
a specific type of black hole, namely a Schwarzschild de Sitter black hole. This is just a regular
Schwarzschild black hole immersed in a de Sitter background. In this space time it can be shown
that the metric gives rise to two horizons, one is the original black hole horizon and the other is a
cosmological horizon that arises due to the expansion of the universe.

Bousso and Hawking study in particular, the scenario where the black hole horizon is near its
maximal mass meaning the black hole horizon is close to the same size as the cosmological horizon.
The degenerate solution where the two horizon are the same is known as the Nariai solution. In the
limit where the black hole is slightly smaller then the cosmological horizon Bousso and Hawking
studied the evolution of the black hole horizon due to quantum effects. Their model includes the
one-loop effective action in the s-wave and large N approximation. Meaning they add effective
action terms to incorporate the quantum effects due to the presence of a large number of fields.
In analyzing the stability of the black hole, they find that when perturbed from the maximal
size there is in fact a stable mode that returns the black hole to the Nariai point, hence the title
anti-evaporation. However, the presence of other modes that are not stable leads them to conclude
that this solution is overall unstable to evaporation.

4.2 Schwarzschild de Sitter Metric

We now look at the aforementioned Schwarzschild de Sitter metric, which is is a combination of
the two metrics, 1.7 and 4.1. This is the most general spherically symmetric metric which satisfies
the Einstein Hilbert action with a cosmological constant 1.18. The metric takes the form:

ds2 = −
(
1− 2µ

r
− Λ

3
r2
)
dt2 +

dr2

1− 2µ
r
− Λ

3
r2
dr2 + r2dΩ2 (4.1)
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Here µ is a mass parameter 1 that controls the size of the black hole. We can see that µ can range
from 0 < µ < 1

3
√
Λ
, with this upper bound corresponding to the degenerate Nariai limit.

To parametrize the behavior of the solution close to the Nariai limit, Bousso and Hawking
followed Ginsparg and Perry [11] in writing the following co-ordinates. First they parametrized µ
by 9µ2Λ = 1− 3ϵ2, then defined the co-ordinates:

t =
1

ϵ
√
Λ
ψ, r =

1√
Λ

[
1− ϵ cosχ− 1

6
ϵ2
]

(4.2)

In these co-ordinates the metric can be shown (see appendix C.1) to take the following form for
first order in ϵ:

− 1

Λ

(
1 +

2

3
ϵ cosχ

)
sin2 χdψ2 +

1

Λ

(
1− 2

3
ϵ cosχ

)
dχ2 +

1

Λ
(1− 2ϵ cosχ) dΩ2 (4.3)

This metric 4.3 is obtained by expanding up to cubic order in epsilon. We show in appendix C.1
that at this order f(r) = sin2 ψ

(
1 + 2

3
ϵ cosχ

)
ϵ2, so we can see there are two horizons corresponding

to χ = 0, which is the black hole horizon (as then r < 1√
Λ
) and χ = π which is the cosmological

horizon (as then r > 1√
Λ
).

4.2.1 Two Dimensional Model

In their paper Bousso and Hawking reduce a four dimensional model to a two dimensional model.
This is based on previous papers in which simple 1+ 1-d black hole models had been studied with
the introduction of evaporation [5] [17] [17]. Bousso and Hawking obtain their two dimensional
model by starting with the regular 4-dimensional Einstein-Hilbert action 1.18 (with the addition
of scalar fields), before integrating out the angular variables to obtain a 2-d action. In using this
action Bousso and Hawking make a spherically symmetric ansatz for the metric that takes the
following form:

ds2 = e2ρ
[
−dt2 + dx2

]
+ e−2ϕdΩ2 (4.4)

Our goal in this section will be to motivate the choice of this metric based on the expansion near
the maximal mass given by the metric 4.3.

Embedding Co-ordinates

In the maximal black hole case ϵ = 0 2, here the metric 4.3 reduces to3:

ds2 =
1

Λ

[
− sin2 χdψ2 + dχ2 + dΩ2

]
(4.5)

We can then proceed to manipulate this metric further by defining z = cosχ =⇒ χ = arccos(z)
then we have that:

dχ =
dz√
1− z2

=⇒ dχ2 =
dz2

1− z2

1All though it is not straighforward to define mass in asymtopically de Sitter space times, it can be shown that
this parameter µ is exactly mass [8].

2We should note that we are not fully setting ϵ→ 0 here as this would make the new time co-ordinate ψ → ∞.
This is better thought of as taking the metric to the next leading order, i.e. ignoring any contributions of O(ϵ).

3If we were to make the time co-ordinate euclidean, i.e. ψE = iψ, then this metric becomes exactly S1 × S2.
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And sinχ =
√
1− z2, so we can write 4.5 as:

ds2 = − 1

Λ
(1− z2)dψ2 +

1

Λ

dz2

1− z2
+

1

Λ
dΩ2 (4.6)

This looks very like the de Sitter space metric 4.1, except for the lack of a z2 term in front of
dΩ2. We can still use the fact that this is similar to the de Sitter metric to write the first two
co-ordinates as an embedding in a 3-d space, as we discussed in 1.3.2. If we define:

X0 =

√
1− z2

Λ
sinhψ, X1 =

√
1− z2

Λ
coshψ, X2 =

z

Λ
(4.7)

With these XµX
µ = 1

Λ
and it can be shown (see Appendix C.1.1) that dXµdX

µ matches the first
two terms of 4.6.

Global Co-ordinates

Since this places our first two co-ordinates into an embedding like de Sitter spacetime, we can
then proceed to use the transformations that apply to de Sitter space time. Following Hartman
in [12] we can define what are known as global co-ordinates, which are called global as they cover
the entire hyperbola. These are defined as:

X0 =
1√
Λ
sinh(

√
ΛT ), X1 =

1√
Λ
cosh(

√
ΛT )ỹ1, X2 =

1√
Λ
cosh(

√
ΛT )ỹ2

Where here ỹi, i = 1, 2 are co-ordinates on the one sphere S1, i.e. ỹ1 = sinx, ỹ2 = cosx so that∑
i ỹ

2
i = 1 which implies

∑
i ỹidỹi = 0. These co-ordinates clearly satisfy the necessary condition

XµX
µ = 1

Λ
and their differentials are given by:

dX0 = cosh
(√

ΛT
)
dT, dXi = sinh(

√
ΛT )ỹidt+

1√
Λ
cosh(

√
ΛT )dỹi

Which means this part of the metric is:

−dX2
0 + dX2

1 + dX2
2 = − cosh2(

√
ΛT )dT 2 + sinh2(

√
ΛT ) (ỹ21 + ỹ22)︸ ︷︷ ︸

1

dT 2

+
2√
Λ
sinh(

√
ΛT ) cosh(

√
ΛT )

���������:0
(ỹ1dỹ1 + ỹ2dỹ2) +

1

Λ
cosh2(

√
ΛT ) (dỹ21 + dỹ22)︸ ︷︷ ︸

dx2

= −dT 2 +
1

Λ
cosh2(

√
ΛT )dx2 (4.8)

Conformal Co-ordinates

With this we are almost at the form of 4.4, what is left is to make these two co-ordinates conformally
flat. We can achieve this from the above global co-ordinates in the following way. Again following
Hartman we can define the following co-ordinates:

cosh(
√
ΛT ) =

1

cos t
=⇒

√
1

cos2 t
− 1 = sinh(

√
ΛT )
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Which means:

√
Λ
dT

dt
sinh(

√
ΛT ) =

sin tdt

cos2 t
=⇒ dT =

sin t√
Λcos2 t

dt√
1

cos2 t
− 1

=
dt√
Λcos t

Plugging this in to the global co-ordinate metric 4.8 we get:

−dT 2 +
1

Λ
cosh2(

√
ΛT )dx2 =

1

Λ cos2 t

[
−dt2 + dx2

]
Since we have shown this 2d metric is the same as the first two terms in 4.6 we can finally write
4.6 fully as:

ds2 =
1

Λ cos2 t

[
−dt2 + dx2

]
+

1

Λ
dΩ2 (4.9)

This is the exact form of 4.4, and we can see that near the maximal point we have that:

e2ρ =
1

Λ cos2 t
, e−2ϕ =

1

Λ
(4.10)

This will be useful as a starting point for introducing perturbations later. But for now we will
keep the exponentials.

Relation Between χ and x

We should also notice that in the above co-ordinate system x is the co-ordinate on the one sphere.
This is because x is the angle that we wrote our co-ordinates ỹi on the one sphere in terms of. In
fact if we write down both the co-ordinate transformations involving the embedding co-ordinate
X1, we see that:

X1 =

√
1− z2

Λ
coshψ, X1 =

1√
Λ
cosh(

√
ΛT )ỹ1

=⇒ sinχ coshψ = cosh
√
ΛT sinx

=⇒ sinχ = a sinx, a > 0

Where we have remembered that z = cos z =⇒
√
1− z2 = sinχ and that ỹ = sin x. Since

coshψ, cosh(
√
ΛT ) > 1 this means χ and x are closely related and more importantly have the

same value at the horizons at t = 0 as then a = 1. The black hole horizon located at χ = 0 has
sin(χ = 0) = 0 =⇒ sinx = 0 must also corresponds to x = 0 and the cosmological horizon at
χ = π =⇒ sin(χ = π) = 0 must also correspond to x = π as x must have increased and π is the
next possible root of the sin function.

We are now ready to use this metric to write down the action.

4.3 Classical Action

4.3.1 Dimension Reduction

As stated earlier Bousso and Hawking start with the 4-dimensional Einstein Hilbert action with
a cosmological constant 1.18 with the addition of N different free scalar fields denoted fi. Being
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free fields they only have a kinetic term in the Lagrangian so the action takes the following form:

S =
1

16π

∫
d4x

√
−g

[
R− 2Λ− 1

2

N∑
i=1

(∇fi)2
]

(4.11)

Here (∇fi)2 = gµν(∇µfi)(∇νfi). Many different scalar fields are introduced as later it is useful to
take some limits involving large N . As discussed in section 4.2.1 an appropriate ansatz for the
4d metric is 4.4. The next step is to integrate out the spherical co-ordinates on the 2-sphere, to
do this we first need to notice that the only part of the above action 4.11 that depends on the
angular co-ordinates θ and ϕ is the determinant of the metric g. From 4.4 we can read off that the
determinant of g is:

g ≡ det(gµν) = −e4ρe−4ϕ sin2 θ

This means that the angular part of the above action integral is:∫ 2π

0

dϕ

∫ π

0

sin θdθ = 4π

It appears however that in order to make their model more akin to the 2d models Bousso and
Hawking rescale the gravitational constant to account for this 4π so that the action still has an
overall factor of 1/16π. This is what the factor would be if a 2d model was considered from the
start. To make it clear when we are talking about the 2-d metric and the 4-d metric we will place
a ∼ on any 2-d quantities.Once the angular co-ordinates have been integrated out we are left with
only the first two components of the metric 4.4:

ds̃2 = e2ρ
[
−dt2 + dx2

]
(4.12)

This metric has an 2d determinant: g̃ = −e4ρ =⇒
√
−g =

√
−g̃ sin θe−2ϕ. Also in reducing the

action form 4-d to 2t-d the value of the Ricci scalar R changes to R̃. We show in appendix via
Mathematica that for the two metrics 4.4 and 4.12 these Ricci scalars (R and R̃ respectively) are:

R = 2e2ϕ + 6e−2ρ
[
(∂tϕ)

2 − (∂xϕ)
2
]
+ 4e−2ρ

[
∂2xϕ− ∂2t ϕ

]
+ 2e−2ρ

[
∂2t ρ− ∂2xρ

]
R̃ = 2e−2ρ

[
∂2t ρ− ∂2xρ

]
(4.13)

=⇒ R = R̃ + 2e2ϕ − 6(∇̃ϕ)2 − 4e−2ρ
[
∂2t ϕ− ∂2xϕ

]
Where we have used the fact that since in the metric 4.12: e2ρ = gtt = gxx =⇒ gtt = gxx = e−2ρ

(as the metric is diagonal) which implies that (∇̃ϕ)2 = gµν(∂µϕ)(∂µϕ) = e−2ρ [(∂tϕ)
2 − (∂xϕ)

2].
With these considerations the action 4.11 can be written as follows after integrating out the

angular co-ordinates:

S =
1

16π

∫
d2x
√
g̃e−2ϕ

[
R̃ + 2e2ϕ − 6(∇̃ϕ)2 − 4e−2ρ

[
∂2t ϕ− ∂2xϕ

]
− 2Λ− 1

2

N∑
i=1

(∇̃fi)2
]

(4.14)

Where we can notice that we don’t have any change to the scalar fields as we are not interested
in any angular effects of these fields so we can assume they are all in the first spherical harmonic
(the only spherically symmetric one) such that the derivative wrt to θ and ϕ vanish. This is waht
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is meant by the s wave approximation, as for low energy scattering the terms in the s orbital are
the only relevant terms.

We can deal with the middle term in this action in the following way. Writing down only this
term and remembering that

√
g̃ = e2ρ we have:

I ≡ 1

16π

∫
d2x
√
g̃e−2ϕ

[
−4e−2ρ

[
∂2t ϕ− ∂2xϕ

]]
= − 1

4π

∫
d2xe−ϕ

[
∂2t ϕ− ∂2xϕ

]
We can then integrate each of these terms by parts picking up a minus sign:

I =
1

4π

∫
d2x

[
(∂tϕ)∂t(e

−2ϕ)− (∂xϕ)∂x(e
−2ϕ)

]
= − 2

4π

∫
d2x

[
∂2t ϕ− ∂2xϕ

]
e−2ϕ = − 8

16π

∫
d2xe2ρe−2ρ

[
∂2t ϕ− ∂2xϕ

]
e−2ϕ

=
1

16π

∫
d2x
√
g̃e−2ϕ

[
8(∇̃ϕ)2

]
Where we assume that the fields vanish at infinity.

Plugging this into the action 4.14 we have the 2-dimensional action that Bousso and Hawking
use:

S =
1

16π

∫
d2x
√

−g̃e−2ϕ

[
R̃ + 2e2ϕ + 2(∇̃ϕ)2 − 2Λ− 1

2

N∑
i=1

(∇̃fi)2
]

(4.15)

We can now notice that the the parameter ϕ which controls the radius of the two sphere (as
r = e−ϕ) now has the form of the kinetic part of a scalar field. This scalar field is known as a
dilaton field and appears in many instances where certain co-ordinates are integrated out, as is
done in many compactification schemes in string theory.

4.4 Effective Action

In this section we discuss the motivation for Bousso and Hawking’s addition of an effective action
term to the action 4.15. This addition is an alternate way of adding quantum effects such as
evaporation to our model. We saw in Chapter 3 that a semi-classical treatment of a scalar field
in the presence of a black hole gives rise to radiation, but the derivation we used made the
approximation that the black hole mass stayed constant through out the evaporation. This model
had no way of accounting for back reaction 4 and in turn was only able to posit that the mass of
the black hole decreased because energy was leaving the system. The approach we outline below
introduces quantum effects through the energy momentum tensor, which ensures that evaporation
is associated with a flow of energy, allowing for a description involving a back reaction.

4.4.1 Conformal anomaly

If we want to introduce quantum effects to our action in then instead of using the classical Tµν , we
should instead deal with its expectation value ⟨Tµν⟩. When we quantize fields, like the ones already

4Note by back reaction we mean the process by which evaporation actually changes the background geometry
of the spacetime, by say changing the mass of the black hole.
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introduced in our action, we formally find that the value of ⟨Tµν⟩ is divergent. Hence there is a
need for some sort of re-normalization scheme to get rid of these infinities while obtaining finite
and physically meaningful results. There are several possible re-normalization schemes, we will see
that in an earlier paper [2] Bousso and Hawking use a method known as zeta function method. It
turns out that when we re-normalize the expectation value of the stress energy tensor in this way,
the process introduces a non vanishing trace to the stress energy tensor; gµνTµν ̸= 0. Since this was
a quantity that vanished classically (as is showed in Appendix C.2.1), we call this non-vanishing
term a trace anomaly. Since the trace of Tµν was expected to vanish due to conformal symmetry,
we call this particular anomaly a conformal anomaly.

4.4.2 Path Integral

In order to to properly include the description of evaporation involving back reaction in our model
a re-normalized stress energy tensor must be included. In [7] it was shown that the amount of
radiation at infinity is proportional to the trace anomaly. Hence this is something we need to
calculate. If we want to calculate the expectation value of the stress energy tensor as part of this
radiation we cannot simply use the definition C.3 with the classical action. To have a quantum
expectation value we need to consider all possible field configurations weighted by some factor that
determines how likely those configurations are. This is given through the path integral formulation
5. In this formalism the integral is over all possible configurations of the fields, the bare integral
times the weight factor can be used as a generating functional. Denoted Z; it is defined for a field
φ as follows:

Z =

∫
D[φ]eiS[φ] (4.16)

Where S is the classical action. The path integral 4.16 leads to a natural interpretation of the
classical limit of quantum mechanics, which we outline in Appendix C.2.2.

4.4.3 Effective Action

We can then consider defining a quantity Γ such that eiΓ = Z. Taking the functional derivative of
Z with respect to gµν then results in the following:

δZ

δgµν
=

∫
D[φ]i

δS

δgµν
eiS[φ]

=
δ

δgµν
(
eiΓ
)
= i

δΓ

δgµν
eiΓ

Re-arranging this we have:

δΓ

δgµν
=

∫
D[φ] δS

δgµν
eiS[φ]∫

D[φ]eiS[φ]

=⇒ − 2√
−g

δΓ

δgµν
=

∫
D[φ]− 2√

−g
δS
δgµν

eiS[φ]∫
D[φ]eiS[φ]

=

∫
D[φ]Tµνe

iS[φ]∫
D[φ]eiS[φ]

(4.17)

5For a formal introduction to path integral formulation of quantum field theory see chapter 9 of Peskin &
Schroeder
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This can then be recognized as a good definition of ⟨Tµν⟩, since it takes into account the value of Tµν
for each field configuration, normalized by the total amount of these configurations. Furthermore,
looking at the LHS of 4.17, we can see that this takes the exact same form as the classical definition
of the stress energy tensor C.3. Except now the classical action S is replaced by this new quantity
Γ. In this regard Γ is called the effective action as it can be used to calculate the quantum
expectation value of ⟨Tµν⟩. With this, the procedure for including quantum effects in the action
becomes clear, we simply add to our classical action this effective action, then the evaporation and
back reaction effects will be automatically included in the model. There is one caveat to this, when
this particular effective action in SI units is proportional to ℏ, which is negligible in the classical
limit ℏ → 0. This makes sense as the effects of evaporation are very small. One way to make the
effects of evaporation larger is to have N scalar fields, then N effective action terms will not vanish
if N is large enough to keep Nℏ fixed.

4.4.4 Calculation of Effective Action

From the action 4.15 we can see that after the dimension reduction to a 2-d system the action for
each of the N scalar fields f takes the form:

Sf =
1

32π

∫
d2x
√
−g̃e−2ϕ(∇̃f)2 (4.18)

Since the scalar fields were introduced in the 4-d action 4.11 they noticeably picked up a coupling
to the dilaton field ϕ, through e−2ϕ. This is something that does not happen in models that start
out as 2-d and introduce scalar fields from there. This action Sf can be written in a more appealing

way. Note that (∇̃f)2 = ∇̃µ

(
f∇̃µf

)
− f∇̃2f , hence the action becomes:

Sf =
1

32π

∫
d2x
√

−g̃e−2ϕ
[
∇̃µ

(
f∇̃µf

)
− f∇̃2f

]
=

1

32π

∫
d2x
√

−g̃
[
∇̃µ

(
e−2ϕf∇̃µf

)
−
(
∇̃µe

−2ϕ
)(

f∇̃µf
)
− e−2ϕf∇̃2f

]
This first term is then just a total derivative, so we are left with:

Sf =

∫
d2x

√
−gfD̂f

Where:

D̂ =
1

32π
e−2ϕ

[
2
(
∇̃µϕ

)
∇̃µ − ∇̃2

]
This form of the action is useful as it is possible to carry out integrals of the form

∫
D[f ]e−Sf , when

the action is quadratic in the fields f . To carry out the integral the operator D̂ is diagonalised
and after a change of variables what is left over is just a product of Gaussian integrals over the
eigenvalues of the operator D̂. This evaluates to a product of the eigenvalues which is nothing
more then the determinant of the operator D̂. For more details on this calculation see pg 189 of
[15]. This all means the effective action is related to the operator D̂ via:

eiΓ =

∫
D[f ]e−

∫
d2x

√
−gfD̂f ∼ (detD̂)# = e#lndetD̂ = e#tr[ln D̂]
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Where in the last line we have used the identity ln det(D̂) = tr[ln D̂]. This identifies Γ ∼ tr[ln D̂],
which in principle allows the calculation of Γ though this is not straightforward. Since computing
this result exactly is difficult, it is common to expand tr[ln D̂] in a Taylor series and analyse the
quantum corrections term by term, just like the Feynman diagram approach to QFT. This is why
the action Bousso and Hawking use is called the one-loop effective action as they expand to the
one loop level.

Bousso and Hawking compute the one loop effective action for dilaton coupled scalars in [2].
They do this by noticing that the trace anomaly they are trying to add to their model must only
consist of co-variant terms with two metric derivatives. There are only three quantities for the
action they are considering that satisfy this, meaning:

T = q1R̃ + q2(∇̃ϕ)2 + q3□ϕ

Where the qi are undetermined coefficients. In [2] Bousso and Hawking consider several scenarios
in order to calculate these coefficients, where they find q1 = 1

24π
, q2 = − 1

4π
and q3 = − 1

12π
. With

this all is left to do is find the effective action that gives rise to this trace anomaly (i.e. through
4.17). It can be shown that this is the following effective action:

W ∗ = − 1

48π

∫
d2x
√

−g̃
[
1

2
R̃
1

□
R̃− 6(∇̃ϕ)2 1

□
R̃− 2ϕR̃

]
Bousso and Hawking then add this N copies this effective action to the classical action, one for each
of the scalar fields f considered. The middle term containing 6(∇̃ϕ)2 1

□R̃ is not carried through
the calculation by Bousso and Hawking as it does not contribute to the final equation 4.37. 6

Stot =
1

16π

∫
d2x
√

−g̃

[
e−2ϕ

(
R̃ + 2e2ϕ + 2(∇̃ϕ)2 − 2Λ− 1

2

N∑
i=1

(∇̃fi)2
)

− N

3

(
1

2
R̃
1

□
R̃− 2ϕR̃

)]

=
1

16π

∫
d2x
√

−g̃

[(
e−2ϕ − N

6

(
1

□
R̃

)
+

2N

3
ϕ

)
R̃ + 2 + 2e−2ϕ(∇̃ϕ)2 − 2Λe−2ϕ − 1

2

N∑
i=1

(∇̃fi)2
]

Defining κ = 2N
3

and w = 2, integrating out the f fields:

Stot =
1

16π

∫
d2x
√

−g̃
[(
e−2ϕ − κ

4

(
1

□
R̃

)
+
κ

2
wϕ

)
R̃ + 2 + 2e−2ϕ(∇̃ϕ)2 − 2Λe−2ϕ

]
(4.19)

4.4.5 Rendering the Action Local

The action 4.19 with the addition of the effective action terms, contains the greens function of
the □ operator, which is not a local function as it contains in its Taylor expansion infinitely
many derivatives of the spatial co-ordinates 7. Containing infinitely many derivatives makes this
function non-local as it needs infinitely many initial conditions, which amounts to needing non
local information 8. In order to render this action local Bousso and Hawking followed Hayward in

6This is because it enters the equation of motion as a ∂2ϕ term and as can be seen from equation C.7, this term
is always of order O(ϵ2).

7Recall that the greens function of □ is 1
□ ∼ 1

|x−x′|δ(t− t′ − 1
c |x− x′|)

8Think of a lattice where the nth point away from the current point adds an initial condition for the nth
derivative, in this way infinity many derivatives requires you to be non-locally far away.
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[14] in introducing a new scalar field Z that mimics these non local terms. It does this by having
its equation of motion be such that when they are subbed back into the Lagrangian, result exactly
in these non-local terms.

In the above action 4.19 the only non-local term is
(

1
□R̃
)
. To render this local consider the

following addition to the action 4.19:

SZ =
1

16π

∫
d2x
√

−g̃
[κ
2
ZR̃− κ

4
(∇̃Z)2

]
=

1

16π

∫
d2x

[
e2ρ

κ

2
ZR̃− κ

4

[
(∂xZ)

2 − (∂tZ)
2
]]

=
1

16π

∫
d2x

[
e2ρ

κ

2
ZR̃ +

κ

4

[
∂2xZ − ∂2tZ

]
Z
]
=

1

16π

∫
d2x
√
−g̃
[κ
2
ZR̃ +

κ

4
(□Z)Z

]
(4.20)

Where we have integrated by parts the second term and used the fact that e−2ρ [∂2xZ − ∂2tZ] =
□Z. In equation 4.25 we show that varying this action wrt Z results in the equation of motion
□Z = 2e−2ρ [∂2xρ− ∂2t ρ] = −R̃. This means we can use the greens function of □ to solve for Z. By
the definition of the integral operator 1

□ :

Z = − 1

□
R̃

Using this we can write our Sz action 4.20 as:

SZ =
1

16π

∫
d2x
√

−g̃
[κ
2
ZR̃− κ

4
R̃Z
]
=

1

16π

∫
d2x
√
−g̃
[κ
4
ZR̃
]

=
1

16π

∫
d2x
√

−g̃
[
−κ
4

1

□
R̃

]
This is exactly the non local term that appears in the action 4.19, so we can safely replace it with
our ansatz for the Z action, the first term in 4.20. With this the total action is now:

Stot =
1

16π

∫
d2x
√

−g̃
[(
e−2ϕ − κ

2
(Z + wϕ)

)
R̃− κ

4
(∇̃Z)2 + 2 + 2e−2ϕ(∇̃ϕ)2 − 2Λe−2ϕ

]
(4.21)

4.5 Equations of Motion

Now that we have obtained a non-local action we can begin to vary the fields and find the equations
of motion. For this we can use the curved spacetime Lagrange density equations we found in B.3.
Since all the fields we are dealing with scalar fields we can just replace the co-variant derivative
with partial derivatives in this equation. 9 This means for some scalar field φ our EoM will take
the following form:

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (4.22)

Some Notation

We would quickly like to define some notation that will allow us to write cleaner expressions in the
following equations of motion. We follow Hawking and Bousso in denoting derivatives wrt t with

9This is because by definition of the co-variant derivative, for a scalar function f : ∇µf = ∂µf .
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a dot (i.e. ∂tϕ = ϕ̇) and derivatives wrt x with a prime (i.e. ∂xϕ = ϕ′). Furthermore we define the
following shorthand:

∂f∂g = −ḟ ġ + ḟ ġ, ∂2f = −ḟ 2 + f ′′

These are essentially just contractions of the partial derivatives with the 2-d Minkowski metric, so
we will often denote intermediate steps of the calculations involving these terms with the Minkowski
metric ηµν .

It will also be useful to define:

δfδg = ḟ ġ + f ′g′, δ2f = f̈ + f ′′

4.5.1 Lagrangian Density

Before we can find the EoM, we need to properly write down our Lagrangian. If we look at the
action 4.21 and remember that

√
−g̃ = e2ρ and that per 4.13 R̃ = −2e−2ρ∂2ρ, then the Lagrange

density is:

L = e2ρ
[(
e−2ϕ − κ

2
(Z + wϕ)

)
(−2e−2ρ∂2ρ)− κ

4
(∇̃Z)2 + 2 + 2e−2ϕ(∇̃ϕ)2 − 2Λe−2ϕ

]
If we then remember that for any field φ: (∇̃φ)2 = gµν(∂µφ)(∂νφ) = e−2ρ [(∂xφ)

2 − (∂tφ)
2] =

e−2ρ(∂φ)2, then we can write this Lagrange density cleanly as:

L = −2
(
e−2ϕ − κ

2
(Z + wϕ)

)
(∂2ρ)− κ

4
(∂Z)2 + 2e2ρ + 2e−2ϕ(∂ϕ)2 − 2Λe2(ρ−ϕ) (4.23)

4.5.2 Z Field EoM

We are now ready to derive the EoM. The Lagrange density equation for the Z field as per 4.22
and Lagrangian 4.23 is:

∂L
∂Z

= 2(
κ

2
)(−∂2ρ), ∂L

∂(∂µZ)
= −κ

2
ηµν∂νZ =⇒ ∂µ

(
∂L

∂(∂µZ)

)
= −k

2
∂2Z

=⇒ −κ∂2ρ+ κ

2
∂2Z = 0

=⇒ ∂2Z − 2∂2ρ = 0 (4.24)

Note that if we multiply this last expression by e−2ρ and use the fact that from 4.13: R̃ = −2e−2ρ∂2ρ
and □ = gµν∂µ∂ν = e−2ρ∂2, then we can see that this equation can be written as:

□Z = −R̃ (4.25)

Which we used above in the introduction of the Z field.
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4.5.3 ϕ Field EoM

For the dilaton field ϕ the EoM 4.22 from Lagrangian 4.23 are:

∂L
∂ϕ

= 4e−2ϕ(∂2ρ)− (∂2ρ)κw + 4e2(ρ−ϕ)Λ− 4e−2ϕ(∂ϕ)2

∂L
∂(∂µϕ)

= 4e−2ϕηµν∂νϕ =⇒ ∂µ

(
∂L

∂(∂µϕ)

)
= 8e−2ϕ(∂ϕ)2 − 4e−2ϕ∂2ϕ

=⇒ 4e−2ϕ(∂2ρ)− (∂2ρ)κw + 4e2(ρ−ϕ)Λ− 4e−2ϕ(∂ϕ)2 − 8e−2ϕ(∂ϕ)2 + 4e−2ϕ∂2ϕ = 0

Dividing through by 4e−2ϕ we have:(
1− wκ

4
e2ϕ
)
∂2ρ− (∂2ϕ) + (∂ϕ)2 + e2ρΛ = 0 (4.26)

4.5.4 ρ Field EoM

We need to be a little more careful when trying to find the equations of motion of the ρ field.
If we look closely at the Lagrangian density 4.23 we can see that it contains ∂2ρ which in turn
contains second derivatives of ρ. We usually do not expect to see such terms in our Lagrangian.
This is mainly because it was shown in the 1800’s by Mikhail Vasilyevich Ostrogradsky that any
non-degenerate Lagrangian that is a function of 2nd time derivatives or higher will lead to an
unstable Hamiltonian. Thankfully this is dependent on the Lagrangian being non-degenerate but
the Lagrangian density 4.23 is degenerate (as there are no quadratic terms or higher in ∂ρ or ∂2ρ).
This means this is a constrained system and indeed the fields must satisfy constraints which are
written down in Bousso’s and Hawking’s paper [3].

While not unstable like the systems Ostrogradsky dealt with, we still have to treat our La-
grangian as Ostrogradsky did due to the presence of the ∂2ρ term. In appendix C.2.3 we show
that a Lagrangian depending on such second order derivatives of a field results in the equations of
motion C.4. Thus using C.4 yields the following:

∂L
∂ρ

= −4e2(ρ−ϕ)Λ + 4e2ρ,
∂L

∂(∂µρ)
= 0,

∂L
∂(∂2ρ)

= −2
(
e−2ϕ +

κ

2
(Z + wϕ)

)
=⇒ ∂2

(
∂L

∂(∂2ρ)

)
= 4e−2ϕ∂2ϕ− 8e−2ϕ(∂ϕ)2 − κ∂2Z − κw∂2ϕ

=⇒
(
4e−2ϕ − κw

)
∂2ϕ− 8e−2ϕ(∂ϕ)2 − κ∂2Z + 4e2ρ

(
1− Λe−2ϕ

)
= 0

Dividing through by −4e−2ϕ we are left with:

−
(
1− wκ

4
e2ϕ
)
∂2ϕ+ 2(∂ϕ)2 +

κ

4
e2ϕ∂2Z + 4e2(ρ+ϕ)

(
Λe−2ϕ − 1

)
= 0 (4.27)

4.5.5 Constraint Equations

As mentioned before there are equations of constraint associated with the Lagrangian 4.23. These
come from varying the Lagrangian wrt to the metric elements g01 and g10. i.e. these constraints
make sure the metric stays diagonal. This variant results in the following constraints:(

1− wκ

4
e2ϕ
) (
δ2ϕ− 2δϕ δρ

)
− (δϕ)2 =

κ

8
e2ϕ
[
(δZ)2 + 2δ2Z − 4δZ δρ

]
; (4.28)(

1− wκ

4
e2ϕ
)(

ϕ̇′ − ρ̇ϕ′ − ρ′ϕ̇
)
− ϕ̇ϕ′ =

κ

8
e2ϕ
[
ŻZ ′ + 2Ż ′ − 2(ρ̇Z ′ + ρ′Ż)

]
. (4.29)
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4.6 Stability of Perturbations

We are now able to discuss the main purpose of Bousso and Hawking’s paper, that is analyzing
the stability of perturbations to the near maximal mass limit (i.e. near the Nariai solution). In
4.2.1 we showed that very close to the Nariai limit the geometry of the becomes that of the metric
4.9, comparing this to the ansatz we made in 4.4 we noticed that this gave us the relations 4.10 for
the coefficients of our ansatz. We can now use these relations along with the previously calculated
equations of motion 4.24, 4.26 and 4.27, to calculate how these relations change under the addition
of quantum effects. Initially near the maximal solution, the radius of the two sphere e−ϕ will
remain constant, the value how-ever will no longer be 1/

√
Λ, similarly the 1/Λ in the e2ρ term

(Which is the radius of the one sphere squared), will be shifted. We can solve for the changes to
these terms by the following ansatz:

e2ρ =
1

Λ1 cos2 t
, e2ϕ = Λ2 (4.30)

The values these take will be governed by the equations of motion. Before we plug in it is useful to
consider what limits we will be taking later so as to help us define some useful parameters. Bousso
and Hawking, as we will see later, take the large N limit, where N is the number of different scalar
fields introduced to our metric. This is so that the quantum fluctuations of metric are dominated
by these fields. Large N means the parameter κ = 2N/3 is large κ >> 1. While it is desired for
quantum effects to have notable change, we still want the changes to be small compared to the
whole spacetime as we are still using a semi-classical approach that does not consider any theory
of quantum gravity. Hence while κ is large, b ≡ κΛ will be small b << 1. It will be useful to write
our quantities in terms of b where we can so that we may expand in this parameter later on.

4.6.1 Calculating Shifts in Λ

We can now proceed to sue the equations of motion 4.24, 4.26 and 4.27, to calculate the values of
Λ1 and Λ2. We start by noticing that we can calculate ∂2ρ in the following way. using the ansatz
for ρ:

∂t
(
e2ρ
)
= 2ρ̇e2ρ =⇒ ρ̇ =

1

2
e−2ρ∂t

(
e2ρ
)
=

1

2
Λ1 cos

2 t∂t

(
1

Λ1 cos2 t

)
= cos2 t · tan t

cos2 t
= tan t

=⇒ ρ̈ =
1

cos2 t
= Λ1e

2ρ

(4.31)

From the ansatz 4.30 we can see that ρ = ρ(t), so ∂2ρ = −ρ̈+ ρ′′ = −ρ̈ = −Λ1e
2ρ.

The Z equation of motion 4.24, can be used to eliminate Z from the ρ equation of motion 4.27,
by replacing ∂2Z with ∂2ρ. Since the in ansatz 4.30 ϕ is a constant, all the derivatives vanish so
we can neglect the (∂ϕ)2 and ∂2ϕ terms. Using all of this the ρ equation of motion becomes:

κ

4
e2ϕ(2∂2ρ) + 4e2(ρ+ϕ)

(
Λe−2ϕ − 1

)
= 0

=⇒ κ

2
∂2ρ+ e2ρ

(
Λ

Λ2

− 1

)
= 0

Using the above derived expression for ∂2ρ = −Λ1e
2ρ we have:
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−κ
2
Λ1 +

Λ

Λ2

− 1 = 0 (4.32)

In a similar manner the ϕ equation of motion 4.26 can be written as:(
1− wκ

4
e2ϕ
)
∂2ρ+ e2ρΛ = 0

=⇒ −
(
1− wκ

4
Λ2

)
Λ1e

2ρ + e2ρΛ = 0

So we have the second relation:

−
(
1− wκ

4
Λ2

)
Λ1 + Λ = 0 (4.33)

We now, with 4.32 and 4.33 have a system of two equations and two unknowns, which can be
easily solved. Seeing as these equations are not linear but rather quadratic, there are two sets of
solutions. However, only one of these corresponds to 1/Λ1 > 0 and Λ2 > 0. The solutions are:

1

Λ1

=
1

8Λ

[
4− (w + 2)b+

√
16− 8(w − 2)b+ (w + 2)2b2

]
(4.34)

And:

Λ2 =
1

2wk

[
4 + (w + 2)b−

√
16− 8(w − 2)b+ (w + 2)2b2

]
(4.35)

If we expand these up to first order in b we find that:

1

Λ1

=
1

Λ

(
1− wb

4

)
+O(b2), Λ2 = Λ

(
1− b

2

)
+O(b2)

So we see that in the presence of at least small quantum effects, both the radii of the one sphere
and two sphere are smaller then the classical case of 1√

Λ
.

4.6.2 Perturbing Two Sphere Radius

The main stability Bousso and Hawking wish to analyze is the effect of perturbing the 2-sphere
radius e−ϕ. Changing this radius changes the original 4 dimensional radius and in turn changes
the radii of the two horizons as we will see later. We discussed at the end of subsection 4.2.1 that
the co-ordinates χ and x are closely related as they are both co-ordinates along the one sphere and
have the same values at both of the horizons. Thus for a small perturbation along the two sphere
we can consider the change in this radius as a function of the compact co-ordinate x to be very
similar as the change we see in equation 4.3. In this equation when the black hole is just below
the maximal mass, the radius squared r2 is, to first order in epsilon r2 = e−2ϕ = 1

Λ
(1 − 2ϵ cosχ).

Bousso and Hawking use this fact to make the following ansatz for the perturbation along the two
sphere:

e2ϕ = Λ2 [1 + 2ϵσ(t) cosx] (4.36)

Where σ(t) is called the metric perturbation. Notice also that this is 1/r2 and that we have
expanded to first order in epsilon, hence the sign change compared to the term in 4.3. We could
also make a similar perturbation of the radius of the one sphere eρ, but as it is pointed out by
Bousso and Hawking, and as we will show later, this perturbation would not enter the equations
of motion for σ at first order in ϵ.
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Metric Perturbation

We can use our equations of motion for the fields to determine the form of this metric perturbation
σ(t). These will give us a differential equation that we can then solve by considering different
scenarios. This differential equation is derived in appendix C.3. The calculation is performed by
using the Z and ϕ equations of motion, 4.24 and 4.26, to write ∂2Z in terms of ∂2ρ and then in
turn ∂2ρ in terms of the field ϕ and other terms. The ρ equation of motion is then used to solve
for the differential equation for leading order in ϵ. The result is as follows:

σ̈

σ
=

a

cos2 t
− 1 (4.37)

Where:

a =
2
√
16− 8(w − 2)b+ (w + 2)2b2

4− wb
(4.38)

Expanding this to first order in b we find that:

a = 2 + b+O(b2)

4.6.3 Horizon Tracing

The next step of the stability analysis is to locate the position of the black hole and cosmological
horizons. It is a little non-trivial to locate the positions of the horizons once quantum effects
have been introduced. In terms of our conformal co-ordinates x and t, we do not simply have
a function f(r) that vanishes at special points of the metric. Instead we can recall some other
special properties of horizons. Horizons are the points where it becomes impossible to stay at a
constant radius. Such an observer is called static and has their velocity vector uµ proportional to
the vector10 ∂t.

Horizon locations

With this consideration we can proceed to find the locations of the horizons in the conformal
co-ordinates. We follow [10] in noticing that a sensible definition of the apparent horizon is where
(∇ϕ)2 becomes null. This is because when this vector becomes space-like one is inevitable dragged
to stronger and stronger coupling as in a classical black hole. Notice that in the action 4.21,
eϕ takes on the role of the gravitational coupling as its inverse square appears in front of the
gravitational terms.

10This is because they are stationary wrt to an observer at spatial infinity, who’s co-ordinates are the exactly the
t and r found in the Schwarzschild metric.
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Horizon Perturbation

With this condition we can see using ϕ′ and ϕ̇ from C.5 we can see that:

(∇ϕ)2 = e2ρ
[
(∂xϕ)

2 − (∂tϕ)
2
]
= 0

=⇒ ϵ2σ2 sin2 x− ϵ2σ̇2 cos2 x

1 + 2ϵσ cosx
= 0

=⇒
(
σ̇

σ

)2

= tan2 x

This only takes place for the values of x that correspond to the horizons, there are two solutions
to this equation; σ̇

σ
= ± tanx. The positive solution has:

xb(t) = arctan

∣∣∣∣ σ̇σ
∣∣∣∣ (4.39)

And will always correspond to the black hole horizon as arctan
∣∣ σ̇
σ

∣∣ ≤ π
2
. To make the other solution

have x ∈ [0, π]11 we can write − tanx as tan(π− x), then the x corresponding to the cosmological
horizon is:

xc(t) = π − xb(t) = π − arctan

∣∣∣∣ σ̇σ
∣∣∣∣

With these values of x we can find the radii of the horizons by plugging into 4.36 since r = e−ϕ.
This tells us that:

1

rb(t)2
= e2ϕ[t,xb(t)] = Λ2 [1 + 2ϵδ(t)] (4.40)

Where we have defined the horizon perturbation δ(t) as:

δ(t) ≡ σ cosxb =
σ√

1 +
(
σ̇
σ

)2 (4.41)

Where in the last step we have used 4.39 and the fact that cos arctan θ = (1+ x)−1/2. 4.40 tells us
the radius of the black hole; the radius of the cosmological horizon can be found by simply replacing
δ(t) with −δ(t) as cos(π − arctan θ) = − cos arctan θ = −(1 + x)−1/2. This gives rise to a smaller
1
r2

and hence a larger radius as expected. We can also see from 4.40 and 4.41 that if the horizon
perturbation grows then the two horizons grow further apart, corresponding to evaporation.

All that is left to do is to solve 4.37 for σ(t) and plug it into the above equations to get the
evolution of the horizons. Since 4.37 is a seconder order ODE, it will have two initial conditions
that need to be fixed.

Figure 4.1: Black hole and cosmological horizon separation

11Recall that we require x ∈ [0, π] as the horizons are initially located at x = 0 and x = π.
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4.6.4 Classical Evolution

As a sanity check, Bousso and Hawking check the classical case with no scalar fields, meaning
κ = 0 (ans so b = 0 also). This implies that a = 2, making it possible to solve the ODE 4.37. Since
κ = 0 it is actually possible to use the constraint equations to simplify the differential equation
4.37. For κ = 0 4.28 reads:

δ2ϕ− 2δϕδρ− (δϕ)2 = 0 (4.42)

We can recall from C.6 that (δϕ)2 = ϕ̇2 + ϕ′2 = O(ϵ2) and δ2ϕ = ϕ̈ + ϕ′′ = 2ϵ cosx[σ̈−σ]
1+2ϵσ cosx

. From 4.31

we also have that ρ̇ = tan t and ρ′ = 0, meaning δϕδρ = ϕ̇ρ̇ = ϵσ̇ cosx
1+2ϵσ cosx

tan t. This means 4.42
becomes:

2ϵ cosx [σ̈ − σ]

1 + 2ϵσ cosx
− 2

ϵσ̇ cosx

1 + 2ϵσ cosx
tan t+O(ϵ2) = 0

=⇒ σ̈ − σ − 2δ̇ tan t = 0

From 4.37 we have, since a = 2: σ̈ = σ (a/ cos2 t+ 1). This means σ̈ − σ − 2δ̇ tan t = 0 becomes:

σ

(
2

cos2 t
+ 2

)
− 2σ̇ tan t = 0

=⇒ 2σ tan2 t− 2σ̇ tan t = 0

=⇒ σ̇ = σ tan t

This equation fixes one of the initial conditions of the second order ODE 4.37, in that we must
now have that σ0 = 0. We can then directly solve this equation by integrating using the u-sub
u = cos t, where we find:

σ =
σ0
cos t

We can then plug this into 4.41 to find very nicely that:

δ(t) =
σ0
cos t√

1 + tan2 t
= σ0 = const

So in the presence of no quantum fields, no evaporation occurs and the horizons stay fixed in place.
As would be expected.

4.6.5 Quantum Evolution

With the classical case well understood and consistent with our expectations we can proceed to
examine the case where κ > 0 and the quantum fields are turned on. When a > 0 it is very
difficult to obtain analytic expression. Instead Bousso and Hawking solve the sigma equation 4.37
in a power series in t to see what the early stages of evaporation look like. We will solve for σ and
hence δ using a power series. It turns out that the leading, non trivial order is quadratic in t, so
we do not need to expand further then that for these purposes. We can make the ansatz that σ
takes the following form:

σ(t) = σ0 + σ̇0t+
1

2
σ̈0t

2
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We can then plug this into 4.37, which to leading order fixes the value of the constant σ̈0 as it
reads σ̈0 = σ0(a− 1). With this fixed, σ can be plugged into 4.41 to find δ(t).

It is useful at this point to consider the possible different initial conditions. Since κ > 0, the
constraint equations 4.28 and 4.29 no longer fix any of the initial conditions as the Z fields can now
be involved. Thus we are left with two, totally separate initial conditions for σ fixed by the values
of σ0 and σ̇0. It is thus useful to consider the two “modes” of excitation, that is the solutions of
σ(t) where only one of σ0 and σ̇0 is non vanishing. These are Dirichlet and Neumann boundary
condition respectively.

Initial Perturbation

Let us first examine the same conditions we had for the classical case, i.e. σ0 > 0 and σ̇0 = 0.
With this consideration we can see that σ̇/σ = (a−1)t

1+(a−1)t2
. Plugging this into 4.41 we get:

δ(t) =
σ0
(
1 + 1

2
(a− 1)t2

)√
1 + (a−1)2t2

(1+(a−1)t2)2

= σ0

(
1 +

1

2
(a− 1)t2

)[
1− 1

2
(a− 1)2t2

]
+O(t4)

= σ0

[
1− 1

2
(a− 1)(a− 2)t2

]
+O(t4)

≈ σ0

[
1− 1

2
bt2
]

Where we have used the fact that a = 2 + b + O(b2) and have ignored any terms of order b2.
This result is very surprising. What it tells us is that in this particular mode when σ0 > 0 and
σ̇0 = 0, the black hole horizon, when perturbed from the maximal mass, will grow instead of
shrink. Thus it can be said that the black hole Anti-evaporates ! The reason this is surprising is
that as we calculated in Chapter 3, the temperature of a black hole in inversely proportional to its
mass, so as the black hole shrinks, losing mass, we expect its temperature to increase and hence
for it evaporate even faster. What we have shown here is the opposite, the black hole seems to
mediate, at least initially through radiation with the cosmological horizon; returning back towards
the maximal size. This would seem to imply that these type of black holes are stable. However,
this is not the only mode and the other modes do in fact lead to instabilities.

Initial “Push”

The other possible type of initial perturbation is when σ̇0 > 0 and σ0 = 0. This describes the
scenario where the two horizons start coincided but are given a initial “push” that make them grow
apart after some time. With this initial condition to leading order in t, σ(t) = σ̇0t so σ̇/σ = 1/t.
This means δ(t) from 4.41 becomes:

δ(t) =
σ̇0t√
1 + 1

t2

= σ̇0t
2 +O(t4)

This is very different to the previous case, once the black hole horizon is given this push, it begins
to grow and will, at least initially, mean the continued evaporation of the black hole. This means
this mode of initial conditions is unstable. If a system has at least one mode of conditions that
lead it to being unstable we are forced to call that system unstable as there is always at least one
mechanism for its collapse.
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This analysis of these two modes of perturbation conclude the main results of Bousso and
Hawking’s paper [3]. In the last section there is also a discussion involving the no boundary
condition, a cosmological model invented by Hawking along with James Hartle, that posits “before”
the big bang time was just another spatial dimension that then diverged to become what it is today.
In this final section Bousso Hawking analyse the Nariai limit in the context of this no boundary
model. They do this as a Nariai black hole is most likely to form from a pair creation process
subject to the no boundary condition. In studying this no boundary condition, they find that it
selects a linear combination of the two types of perturbations that were discussed above. Hence,
it is concluded that primordial black holes are unstable. Further discussion of this is beyond the
scope of this work.
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Conclusion
In conclusion, this project has explored and documented key aspects of quantum field theory in
curved spacetime, with a focus on black hole dynamics. Starting with the Unruh effect, accelerating
observers perceiving particle creation in a vacuum were examined, leading to the understanding
that particle and vacuum states are observer-dependent. Building on this foundation, the work
analysed Hawking radiation, demonstrating how black holes emit radiation due to quantum effects
near their event horizons. Finally, the concept of black hole anti-evaporation in the Schwarzschild-
de Sitter spacetime was investigated, where quantum corrections can lead to unexpected dynamics,
such as the black hole’s expansion after perturbations. These results underscore that even in the
absence of a theory of quantum gravity, black holes and horizons in general can be studied using
a variety of methods, each one enriching our knowledge and understanding of them and further
paving the way for future advancements towards such a theory.
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Appendix A
The Unruh Effect

A.1 Accelerating Observers

The goal here is to find the co-ordinates that best describe an constant accelerating observer. We
work in 1 + 1-dimensional Minkowski space to simplify calculations. If we have an observer at the
origin in the frame S and a constant accelerating observer (constant acceleration κ in their own
frame), whose frame is denoted S ′. Then the four acceleration is defined as:

αµ =
d

dτ
uµ =

d

dτ

(
γ(1,v)T

)
.

From the definition of proper time we have d
dτ

= γ d
dt
, so:

αµ = γ

[
dγ

dt
(1,v)T + γ(0,

dv

dt
)T
]
= γ

[
γ3(v · a)(1,v)T + γ(0, a)T

]
=
(
γ4(v · a), γ4(v · a)v+ γ2a

)T
Where we have used the fact that dγ/dt = γ3v · a. Here a ≡ dv

dt

Then the two 4-accelerations αµ and α′µ = (0, κ) are related via a Lorentz Transformation
which is a function of the relative velocity v:

α′µ = Λµν(v) α
ν

In 2-dimensions a → a is a scalar, so:

α′µ =

(
0
κ

)
=

(
γ −γv

−γv γ

)(
γ4(va)

γ4(va)v + γ2a

)
=⇒ κ = −γ5v2a+ γ5v2a+ γ3a = γ3a (A.1)

So the stationary observer sees the constant accelerating observer, accelerating with an acceleration
of κγ−3. We can now use this to solve for the trajectories that the accelerating observer must be
following. From A.1 we have:

dv

dt
= κγ−3 =⇒ γ

dv

dt
=
dv

dτ
= κγ−2

=⇒ τ − τ0 =
1

κ

∫
dv

(1− v2)
, (v = tanhψ)

=
1

κ

∫
dψ =

1

κ
ψ =

1

κ
arctan (v)
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Where we have used the fact that 1− v2 = 1− sinh2 ψ
cosh2 ψ

= 1
cosh2 ψ

= 1
γ2

and dv = 1
cosh2 ψ

dψ. This

means that:

v =
dv

dt
= tanh (κ(τ − τ0))

=⇒ γ
dv

dt
=
dv

dτ
= sinh (κ(τ − τ0)) , (γ−1 = coshψ)

=⇒ x(τ) = x0 +
1

κ
cosh(κ(τ − τ0))

This is the trajectory the particle follows with respect to its own proper time. We would also like
to know how this proper time relates to the time of the stationary observer. Returning to A.1 we
have that:

dv

dt
= κγ−3, (recall: v = tanhψ)

=⇒ t− t0 =
1

κ

∫
dv

(1− v2)3/2
=

1

κ

∫ (
1

cosh2 ψ

)1−3/2

dψ

=⇒ t− t0 =
1

κ

∫
coshψdψ =

1

κ
sinh (arctan (v))

But we know that τ − τ0 =
1
κ
arctan (v) so we can write that:

t− t0 =
1

κ
sinh(κ(τ − τ0))

These two equations describe how for how an observer with a constant acceleration κ, moves
through spacetime wrt to a stationary observer with local time t and position x. We can write
these cleanly by setting τ0 = t0 = x0 = 0 and relabeling the constant acceleration from κ→ a:

t(τ) =
1

a
sinh(aτ)

x(τ) =
1

a
cosh(aτ)

(A.2)

(A.3)

A.1.1 Rindler metric

We can calculate the induced metric in Minkowski space (t, x), due to the Rindler co-ordinates 2.1
and 2.2, by inserting them into the Minkowski metric:

ds2 = −dt2 + dx2 = −
(
cosh(αη)eαξdη + eaξ sinh(αη)dξ

)2
+
(
cosh(αη)eαξdξ + eaξ sinh(αη)dη

)2
= e2αξ

[(
cosh2(αη)− sinh2(αη)

)
dξ2 −

(
cosh2(αη)− sinh2(αη)

)
dη
]

=⇒ ds2 = e2αξ
[
−dη2 + dξ2

]
t (A.4)

From this we can see that we consider η the time co-ordinate and ξ the space co-ordinate. We can
use this line element to read off the components of the metric. In matrix form this is:

(gµν) =

(
−e2αξ 0
0 e2αξ

)
=⇒ (gµν) =

(
−e−2αξ 0

0 e−2αξ

)
(A.5)
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A.1.2 Time-like Killing Vectors

We have stated already that η is the “time” co-ordinate for the Rindler co-ordinates, now we check
that it is indeed a time-like Killing vector. Let us first do this for Region I, i.e. using co-ordinates
2.1 and 2.2. Using the chain rule since η = η(t, x) we can write1:

∂η =
∂x

∂η
∂x +

∂t

∂η
∂t = eaξ sinh(aη)∂x + eaξ cosh(aη)∂t = a (t∂x + x∂t)

It is easy to show that the same holds for the co-ordinates 2.4 and 2.5. So this expression holds
for Region II.

To check whether ∂η is a time-like Killing vector we have to look at its norm. This is independent
of co-ordinate system but is most easily seen in regular Minkowski co-ords (t, x):

(∂η)
µ(∂η)µ = gµν(∂η)

µ(∂η)
ν = a2(−x2 + t2) < 0 (In Region I & II |x| > t) (A.6)

Thus since the norm is always negative in Region I & II, ∂η is time-like. It then follows from the
definition of a Killing vector as Kµ such that ∇(µKν) ≡ ∇µKν + ∇νKµ = 0, that ∂η is also a
Killing vector as we can write2:

∇µ(∂η)ν = ∇µ (gνσ(∂η)
σ) = ∂µ

(
−axδtν + atδxν

)
= −aδtνδxµ + aδxνδ

t
µ = −

[
aδtνδ

x
µ − aδxνδ

t
µ

]
= −∇ν(∂η)µ

So ∂η is a Time-like Killing Vector in Region I & II .

A.1.3 Future Directed Vectors

There is now the small issue of future directedness. For a given manifoldM all vectors X, Y ∈ TpM
the tangent space of the manifold at every point p can be split up into two equivalence classes,
given by X ∼ Y ⇐⇒ g(X, Y ) < 0. We then call one of these classes future directed and the other
past directed. It obviously makes sense to call ∂t future directed, so we just have to check when
g(∂η, ∂t) < 0 to find out when ∂η is future directed.

g(∂η, ∂t) = gµν(∂η)
ν(∂t)

µ = gµν(∂η)
ν(δµt ) = (−1)(ax)(1) = −ax

So we can see that this is future directed in Region I where x > 0, but is past directed in Region
II where x < 0. To fix this we have to use ∂−η = −∂η as this has the same norm as in A.6 and is
still a Killing vector, but has g(∂η, ∂t) = ax < 0 in Region II.

This means our time-like future directed Killing vectors are ∂η in Region I and ∂−η in Region II.

A.1.4 Klein Gordon Inner Product

We can think of our expression of the scalar field ϕ in terms of the plane wave modes in 1.3 as
the expansion of the scalar field over a basis. I.e. we have just performed a change of basis. But
since this is just a Fourier transform into momentum space, we are familiar with how to calculate

1From this form we can actually recognize ∂η as just a times the boost vector in the +x direction, which is
expected for an observer that constantly has to boost to accelerate.

2Note that this calculation was in Minkowski co-ordinates, where all Christoffel symbols are 0.
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the form of ϕ(p) (which are essentially the creation and annihilation operators) in the momentum
basis, we just have to perform an inverse Fourier transform. in this sense we can think of this
“operation of inverse transform” as an inner product over the vector space of plane wave modes
that gives us non-vector quantities, the ϕ(p).

However if we change to a different co-ordinate system and the scalar field ϕ is no longer
expressible in terms of plane waves, we will need to develop a proper criteria for choosing modes
and calculating creation and annihilation operators. One thing we certainly expect from this inner
product is that it should be independent of time. So the question is can we construct a quadratic
(inner product needs to be bi-linear) combination of two fields ϕ1 and ϕ2 that is time independent.
Recall that as part of Noether’s theorem, if there exists a conserved 4-current ∂µj

µ = 0 then since
this takes the form of a continuity equation the integral of 0th component of the 4-current must
be a conserved “Noether charge”. So all we need to do is find a conserved current, or equivalently
a continuity equation for the Klein Gordan scalar field.

If we start with what we know ϕ satisfies, the Klein Gordan equation:(
∂µ∂

µ +m2
)
ϕ = 0

Now we want to get a quadratic combination, so lets multiply by the complex conjugate ϕ∗ 3 and
subtract the complex conjugate of the same :

ϕ∗∂µ∂
µϕ− ϕ∂µ∂

µϕ∗ + (ϕ∗ϕ− ϕϕ∗)m2 = 0

The second term will vanish as these are scalar fields. Notice that we can then pull out a derivative
from the first term as the cross terms vanish:

∂µ (ϕ
∗∂µϕ− ϕ∂µϕ∗) = 0

Which gives us a conserved current Jµ = ϕ∗∂µϕ− ϕ∂µϕ∗. From this the conserved charge is:∫
j0d3x =

∫
(ϕ∗∂0ϕ− ϕ∂0ϕ

∗) d3x

Which has been constructed to be conserved. Now we can notice that since ϕ∂0ϕ
∗ = (ϕ∗∂0ϕ)

∗, this
is a complex number minus its conjugate, which is always imaginary. So to make this quantity real
we have to multiply by i. This is then naturally what we should choose to be our inner product.
It is called the Klein Gordon inner product :

(ϕ1, ϕ2) = i

∫
(ϕ∗

1∂0ϕ2 − ϕ2∂0ϕ
∗
1) d

3x (A.7)

It can be checked that if we take the time derivative of this equation it vanishes as long as both
fields satisfy the KG equation.

A.1.5 Orthogonality of Rindler Modes

Here we check that the Rindler modes defined in 2.7 and 2.8 are properly orthogonal and normalized
with respect to the Klein Gordan inner product A.7. In the 1 + 1 dimensional case, the integral

3Even if we deal with real scalar fields the expansion over modes can be complex as it is for plane waves.
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over space, with measure d3x becomes just a single integral over the spatial Rindler co-ordinate ξ.
So:

(g
(1)
k , g

(1)
k′ ) = i

∫
dξ
[
g
(1)∗
k (∂ηg

(1)
k′ )− g

(1)
k′ (∂ηg

(1)∗
k )

]
= i

∫
dξ

4π
√
ωkωk′

[
eiωkη−ikξ(−iωk′)e−iωk′η+ik

′ξ − e−iωk′η+ik
′ξ(iωk)e

iωkη−ikξ
]

=
ωk + ωk′

4π
√
ωkωk′

eiη(ωk−ωk′ )

∫
dξeiξ(k

′−k) =
ωk + ωk′

4π
√
ωkωk′

eiη(ωk−ωk′ )(2πδ(k′ − k))

= δ(k − k′)

In a similar manner one can prove (g
(2)
k , g

(2)
k′ ) = δ(k−k′). The product (g(1)k , g

(2)
k′ ) is clearly vanishing

in Regions I and II as at least one of the modes vanish in each region. It is questionable whether
they vanish in Regions III and IV, but we will show later that we can construct them to vanish.
This means we can collectively write:

(g
(1)
k , g

(1)
k′ ) = δ(k − k′)

(g
(2)
k , g

(2)
k′ ) = δ(k − k′)

(g
(1)
k , g

(2)
k′ ) = 0

(A.8)

A.1.6 Left and Right Rindler Modes

When we split the Rindler modes into right and left moving in 2.16 we actually solve our problem
of covering Regions III and IV of spacetime. Here is how. We want to figure out what lines of
constant phases for these modes look like as lines of positive phase represent the direction the
waves are traveling in. Think of this as following a point on a wave as it moves, if you follow in
the direction its traveling at the same speed as the wave the phase appears not to change. We
saw that in 2.17 that right moving modes in Region I are functions of x− t, which means lines of
constant phase of this mode have x− t = const, i.e. these are 45◦ lines with positive slope. What
this means is that in Region I right moving modes can only come from Region IV, meaning they
must have x+ t < 0.

Similarly if we look at 2.19 we see that these modes which are part of Region II also have line
of constant phase with x− t = const and thus also are 45◦ lines with positive slope. How ever since
these modes must be part of Region II, these modes can only occupy Regions I and III, meaning
they have x+ t > 0.

This discussion shows that the two modes 2.17 and 2.19 cover all of Minkowski space and are
non-overlapping. The exact same argument can be repeated for the left moving modes, in this case
one would find that lines of constant phase have x+ t = const and that the two modes occupy the
regions with x − t > 0 and x − t < 0, leading again to two non-overlapping modes that cover all
of spacetime. This is that given a fixed k the modes g

(1,2)
k and g

(2,1)
−k are defined in separate, non

overlapping regions, so we can write:

(g
(1)
k , g

(2)
−k) = 0 (A.9)
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A.1.7 Normalization of h
(1,2)
k Modes

Here we derive the normalization of the modes 2.27 and 2.28 according to the Klein Gordon inner
product as defined in A.7. We know from the discussion of in section 2.4 that h

(1)
k must take the

form:

h
(1)
k = A(ωk)

[
g
(1)
R (k) + (−1)

iω
a g

(2)∗
L (k)

]
(A.10)

Where A(ω) is the normalization factor, which is a function of the frequency ω = ωk. We can make

use of the choice of logarithm 2.33 which gets rid of the ambiguity by setting (−1)−
iω
a = e−

πω
a ,

from 2.34. For this mode to be properly normalized we must have that (h
(1)
k , h

(1)
k′ ) = δ(k − k′) as

we had for the Rindler modes in A.1.5. To avoid calculating an integral we can simply use this
expression A.10 along with the orthogonality of the Rindler modes in A.8. This means:

(h
(1)
k , h

(1)
k′ ) = A(ωk)A

∗(ωk′)
(
g
(1)
R (k) + e−

πωk
a g

(2)∗
L (k) , g

(1)
R (k′) + e−

πωk′
a g

(2)∗
L (k′)

)
= A(ωk)A

∗(ωk′)
[(
g
(1)
R (k), g

(1)
R (k′)

)
+ e−

π(ωk+ωk′ )
a

(
g
(2∗)
L (k), g

(2∗)
L (k′)

)]
Where here we don’t have any cross terms as g

(1)
R (k) and g

(2)∗
L (k) do not overlap, as discussed in

A.1.6. We can then go ahead and use the results of A.8 along with the property ?? of of the KG
inner product to find:

= A(ωk)A
∗(ωk′)

[
δ(k − k′) + e−

π(ωk+ωk′ )
a [−δ(k − k′)]

]
= |A(ωk)|2δ(k − k′)

[
1− e−

2πωk
a

]
This must be equal to δ(k − k′), so choosing A(ω) to be real and positive we find:

A(ω) =
1√

1− e−
2πω
a

(A.11)

A.1.8 Complex Theorem

Here we discuss why the Theorem in 2.5.1 is true. We can think about this using the Fourier
transform, let us consider some complex function f(u), we can write down the Fourier transform
as:

f(u) =

∫ ∞

−∞
f̃(λ)e−iλudλ

Then if f̃(λ) is non-zero for any λ < 0 then in the lower half plane (Im(u) < 0) we can split the
exponential factor into e−iλu = eλIm(u)eλRe(u) = e(−|λ|)(−|Im(u)|)e−|λ|Re(u) = e|λ||Im(u)|e−|λ|Re(u), So we
can see that as Im(u) → −∞ this factor diverges. Since this holds for any λ < 0, this condition
is sufficient and we can say that f(u) being a function of positive frequencies is equivalent to it
being analytic (as it needs to behave well, be smooth ect) and bounded in the lower half complex
plane.
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B.1 Black Holes

B.1.1 Null Geodesic integral

Here we compute the integral in 1.8:

t− t0 =

∫
dr(

1− 2M
r

) =

∫
rdr

(r − 2M)

To do this we can integrate by parts, using u = r, =⇒ du = dr and v = ln (r − 2M) =⇒ dv =
dr/(r − 2M). This means:

t− t0 = uv −
∫
vdu = r ln (r − 2M)−

∫
ln (r − 2M) dr

= r ln (r − 2M)− (r − 2M) ln (r − 2M) + (r − 2M) = 2M ln (r − 2M) + (r − 2M)

= r + 2M ln
( r

2M
− 1
)
+ C

t− t0 = r + 2M ln
( r

2M
− 1
)

(B.1)

Where in the last step we have absorbed the constant into the definition of t0.

B.1.2 Eddington-Finkelstein metric

Here we show that the Eddington-Finkelstein metric is indeed 1.13. We can start from the tortoise
metric 1.11 and notice that t = 1

2
(u+ v) and r∗ = 1

2
(v − u), so we have:

dt2 =
1

4

[
du2 + dudv + dv2

]
dr∗2 =

1

4

[
du2 − 2dudv + dv2

]
=⇒ −dt2 + dr∗2 = −dudv

Plugging this into 1.11 gives us the metric 1.13. If we instead want v and r we can use the fact
that dr

f(r)
= dr∗ = 1

2
(dv − du) =⇒ du = dv − dr

f(r)
so:

−f(r)dudv = −f(r)dv2 + 2dvdr

This gives us 1.12
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Christoffel Symbols

Here we calculate the Christoffel symbol Γ0
00 in the Eddington-Finkelstein co-ordinate system

(u, v, θ, ϕ), as it is used in the calculation of 3.10. We can see that the metric 1.13 in matrix form
is:

(gµν) =


0 −1

2
f(r) 0 0

−1
2
f(r) 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 =⇒ (gµν) =


0 − 2

f(r)
0 0

− 2
f(r)

0 0 0

0 0 1
r2

0
0 0 0 1

r2 sin2 θ


Using the definition of the Christoffel symbols as Γσµν = 1

2
gσα (∂µgαν + ∂νgαµ − ∂αgµν), we can

see that:

Γ0
00 =

1

2
g0α (∂0gα0 + ∂0gα0 − ∂αg00)

= g01∂0g10 = − 2

f(r)
∂u

(
−f(r)

2

)
=

1

f(r)
∂uf(r)

To calculate ∂uf(r), we need to employ the partial derivative chain rule, Since we can write
u = v − 2r∗, we can consider u a function of v and r∗, this way ∂

∂u
= ∂v

∂u
∂
∂v

+ ∂r∗

∂u
∂
∂r∗

, since v is
constant along this geodesic, we must have that ∂vr = 0 =⇒ ∂vf(r) = 0. We can also see that
since r∗ = 1

2
(v − u) =⇒

(
∂r∗

∂u

)
v
= −1/2. So we can write:

Γ0
00 =

1

f(r)
∂uf(r) =

1

f(r)

(
−1

2
∂r∗f(r)

)
= −1

2

f(r)

f(r)
∂rf(r) = −1

2
f ′(r) (B.2)

Where we have used the fact that ∂r∗ = f(r)∂r, from B.12.

B.1.3 Kruskal Metric

Here we calculate the Kruskal metric 1.15. To do this we start with the Eddington-Finkelstein
metric 1.13, then using the defining relations 1.14 we find that dU = −Udu/4M and dV =
V dv/4M , plugging these into 1.13 we find:

ds2 =
16M2

UV

(
1− 2M

r

)
dUdV + r2dΩ2

= −32M3

r
e−r/2MdUdV + r2dΩ2

Where in the last step we have used, UV = −e(v−u)/4M = er
∗/2M = er/2M (r/2M − 1)

= r
2M
er/2M (1− 2M/r).

B.1.4 Penrose Metric

Here we derive the metric for Penrose diagrams 1.17. To do this we start with the Kruskal metric
1.15, then using the relations 1.16 we can see that since d

dU
(arctan(U)) = 1

1+U2 , then:

d (arctan(U)) =
dU

1 + U2
=

dU

1 + tan2 u′

= cos2 u′dU
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Since the same holds for v′ = arctan (V ), we can plug these into the metric 1.15 to obtain 1.17.

B.1.5 EoM in Curved Space-Time

Here we want to vary the action S wrt to a scalar field φ, noting that the action, since we are in
curved space-time, the Lagrange density L(φ,∇µφ) is a function of the co-variant derivative of the
scalar field, this means when we integrate by parts, where we previously had a four derivative in
the flat space-time case, we will now have a covariant derivative. This means varying the actions
such that δS = 0, implies:

δS =

∫
d4xδL =

∫
d4x

(
∂L
∂φ

δφ+
∂L

∂ (∇µφ)
δ∇µφ

)
=

∫
d4x

(
∂L
∂φ

− ∂µ

(
∂L

∂ (∇µφ)

))
δφ

∂L
∂φ

− ∂µ

(
∂L

∂ (∇µφ)

)
= 0 (B.3)

Where we have integrated by parts the second term (Using the fact that δ∇µφ = δ∂µφ as φ is a
scalar) and assumed the fields vanish at infinity.

B.1.6 d’Alembertian in Curved Space-Time

Here we show that the term that comes from variation of the part of the action quadratic in
the covariant derivative of a scalar field φ, is equivalent to the extended d’Alembertian operator
□ = gµν∇µ∇ν . We will start with this term and expand, using the fact that since φ is a scalar
field the action of the covariant derivative reduces to the partial derivative ∇νφ = ∂νφ:

□φ = gµν∇µ∇νφ = gµν∇µ(∂νφ) = gµν
(
∂µ∂νφ− Γσµν∂νφ

)
Where we have used the definition of the covariant derivative in the last step. The Christoffel
symbols are defined as Γσµν =

1
2
gσλ (∂νgµλ + ∂µgλν − ∂λgµν). This allows us to expand □φ as:

□φ = gµν∂µ∂νφ− 1

2
gσλ [gµν∂νgµλ + gµν∂µgλν − gµν∂λgµν ] ∂σφ

= gµν∂µ∂νφ− gσλgµν∂νgµλ∂σφ+
1

2
gσλgµν∂λgµν∂σφ (B.4)

Where we have relabeled the indices on the second and third terms. We can find forms for each
of these terms through the following arguments. First we establish the fact that since the metric
is its own inverse gµνgνσ = δµσ = const, then this means that ∂λ(g

µνgνσ) = 0, this then means:

(∂λg
µν)gνσ = −gµν(∂λgνσ)

=⇒ ∂λgνσδ
ν
ρ = −(∂λg

µν)gνσgµρ =⇒ ∂λg
µνδρν = −(∂λgνσ)g

µνgσρ

=⇒ ∂λgρσ = −(∂λg
µν)gνσgµρ =⇒ ∂λg

µρ = −(∂λgνσ)g
µνgσρ (B.5)

We know one of the terms will involve a ∂λ
√

|g|, we need to figure out what this term looks like

when expanded. We can see that since the metric always has a negative determinant,
√

|g| =
√
−g:

∂λ
√

|g| = ∂λ

[
(−g−1)−

1
2

]
= −1

2

[
(−g−1)−

3
2

]
∂λ(−g−1) (B.6)
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To calculate ∂λ(−g−1) we can use the fact that about matrices that eTr(A) = det(eA) which is
equivalent to Tr(ln(M)) = ln(detM), where lnM ≡ A and M ≡ elnM . We can then calculate 1:

∂λTr(lnM) = Tr(∂λ(M)M−1)

∂λ ln(det(M)) =
∂λ(det(M))

det(M)

=⇒ Tr(M−1∂λ(M)) =
∂λ(det(M))

det(M)
(B.7)

We can then let M = gµν =⇒ det(M) = 1
g
. From B.7 we then have that Tr(gµν∂λ(g

µν)) = ∂λ(g
−1)

g−1

so we have:

∂λ(−g−1) = −1

g
gµν∂λ(g

µν) =
1

g
gµν∂λ(gδγ)g

µδgγν =
1

2
gγδ(∂λgδγ) =

1

2
gµν(∂λgµν)

Where we have dropped the trace as the repeated indices imply it (only because gµν is diagonal)
and the second step here makes use of the relation B.5. Plugging this into B.6:

∂λ
√
|g| = −1

2

[
(−g)

3
2

]
(
1

g
)gµν∂λ(gµν) =

1

2

√
|g|gµν∂λgµν

From this we can recognize the third term in B.4 is:

1

2
gσλgµν∂λgµν∂σφ =

1√
|g|
gσλ∂λ

√
|g|∂σφ =

1√
|g|
gµν∂µ

√
|g|∂νφ (B.8)

For the second term in B.4 we can use B.5 to write it as:

gσλgµν∂νgµλ∂σφ = −gσλgµν∂νgδγgδµgγλ∂σφ = −δνδ ∂νgδγδσγ∂σφ = −∂νgνγ∂γφ = −∂µgµν∂νφ (B.9)

This means plugging B.8 and B.9 into B.4 we get:

□φ = gµν∇µ∇νφ = gµν∂µ∂νφ+ ∂µg
µν∂νφ+

1√
|g|
gµν∂µ

√
|g|∂νφ

=⇒ □φ =
1√
|g|
∂µ

[√
|g|gµν∂νφ

]
(B.10)

As needed.

1To see why the first calculation here holds, consider dM/M = d (
∑∞

n=0(lnM)n/n!) /M = d(ln(M))
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B.2 Wave Equation

B.2.1 Tortoise Wave equation

Here we derive the wave equation with the Tortoise co-ordinate r∗. We show that it reduces to
the wave equation with some potential V (r). If we divide 3.5 by 1

r
Yℓm and use 3.6, we can write:

0 = −
(
1− 2M

r

)−1

∂2t f +
1

r
∂r

((
r2 − 2Mr

) [∂rf
r

− f

r2

])
− ℓ(ℓ+ 1)

r2
f

= −
(
1− 2M

r

)−1

∂2t f +
2

r2
(r −M)

[
∂rf − f

r

]
+ (r − 2M)

[
∂2rf

r
− ∂rf

r2
− ∂rf

r2
+ 2

f

r3

]
− ℓ(ℓ+ 1)

r2
f

= −
(
1− 2M

r

)−1

∂2t f +

(
1− 2M

r

)
∂2rf +

2M

r2

[
∂rf − f

r

]
− ℓ(ℓ+ 1)

r2
f = 0 (B.11)

We can then change the radial co-ordinate r to the tortoise co-ordinate r∗ defined in 1.10. With
this the partial derivative change via:

∂r =
dr∗

dr
∂r∗ =

(
1− 2M

r

)−1

∂r∗

∂2r = ∂r

((
1− 2M

r

)−1

∂r∗

)

= −
(
1− 2M

r

)−2(
2M

r2

)
∂r∗ +

(
1− 2M

r

)−2

∂2r∗

(B.12)

With this we can see the middle two terms of B.11 become:(
1− 2M

r

)
∂2rf +

2M

r2

[
∂rf − f

r

]
=

−
(
1− 2M

r

)−1(
2M

r2

)
∂r∗f +

(
1− 2M

r

)−1

∂2r∗ +
2M

r2

[(
1− 2M

r

)−1

∂r∗f − f

r

]

=

(
1− 2M

r

)−1

∂2r∗ −
2M

r3
f

So we can write B.11 as:

− ∂2t f + ∂2r∗f −
(
1− 2M

r

)(
2M

r3
+
ℓ(ℓ+ 1)

r2

)
f = 0

[
−∂2t + ∂2r∗ − V (r)

]
f = 0 (B.13)

As needed.
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B.3 Bogolubov Transformations

Often we can expand a scalar field ϕ over two sets of basis modes, fk and gk:

ϕ =

∫ ∞

−∞
dk
[
akfk + a†kf

∗
k

]
=

∫ ∞

−∞
dk′
[
bk′gk′ + b†k′g

∗
k′

]
Then if both these basis modes satisfy the same form of the □ϕ = 0 equation, and are themselves
a complete orthonormal set, then it is always possible to express one mode in terms of the other:

gk =

∫ ∞

−∞
dk′ [αkk′fk′ + βkk′f

∗
k′ ] (B.14)

Here αkk′ and βkk′ are components of matrices. Since we are in the continuum limit these are
infinite dimensional matrices. Their interpretation as matrices makes more sense in the discrete
case.

As mentioned these two sets of modes fk and gk are orthonormal sets, meaning they satisfy
the following relations wrt to the KG inner product A.7:

(fk, fk′) = δ(k − k′), (gk, gk′) = δ(k − k′)

(fk, f
∗
k′) = 0, (g∗k, gk′) = 0

(B.15)

With these we can immediately see that:

(gk, fk′) = αkk′ , (gk, f
∗
k′) = −βkk′

(fk, gk′) = α∗
k′k, (fk, g

∗
k′) = βk′k

(B.16)

Where the minus on the top right term appears due to the fact that: (f ∗
k , f

∗
k′) = −(fk, fk′) =

−δ(k − k′), as per ??.
The bottom two expressions follow from the top two in the following way. For any two modes,

as per ??, we have (ϕ1, ϕ2)
∗ = (ϕ2, ϕ1) =⇒ (fk, gk′) = (gk′ , fk)

∗ = α∗
k′k. Also per ??, (ϕ1, ϕ2) =

−(ϕ∗
1, ϕ

∗
2) =⇒ (fk, g

∗
k′) = −(f ∗

k , gk′)
∗ = −(gk′ , f

∗
k ) = βk′k. This means the corresponding expansion

of fk in terms of gk′ is:

fk =

∫ ∞

−∞
dk′ [α∗

k′kgk′ − βk′kg
∗
k′ ] (B.17)

These are Bogolubov Transformations.

B.3.1 Completeness Relations

Here we prove some useful properties that come from the above Bogolubov transformations B.14
and B.17. If we insert B.14 into the relation (gk, gk′) = δ(k − k′):(∫ ∞

−∞
dp
[
αkpfp + βkpf

∗
p

]
,

∫ ∞

−∞
dp′
[
αk′p′fp′ + βk′p′f

∗
p′

])
= δ(k − k′)

=⇒
∫ ∞

−∞
dp

∫ ∞

−∞
dp′
[
αkpα

∗
k′p′(fp, fp′)− βkpβ

∗
k′p′(f

∗
p , f

∗
p′)
]
= δ(k − k′)
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Then using the orthogonality relations B.15:

=⇒
∫ ∞

−∞
dp
[
αkpα

∗
k′p − βkpβ

∗
k′p

]
= δ(k − k′) (B.18)

B.3.2 Operator Relations

From the expansions B.14 and B.17 we can retrieve expressions for relations between the two
creation and annihilation operator sets ak and bk. If we take the inner product of (ϕ, gk) and use
the expansion of ϕ over fk:

(ϕ, gk) =

(∫ ∞

−∞
dk′
[
ak′fk′ + a†k′f

∗
k′

]
, gk

)
=

∫ ∞

−∞
dk′
[
ak′(fk′ , gk) + a†k′(f

∗
k′ , gk)

]
=

∫ ∞

−∞
dk′
[
α∗
kk′ak′ − β∗

kk′a
†
k′

]
Where we have used the relations in B.16. But we could also do this with the expansion of ϕ in
terms of gk:

(ϕ, gk) =

(∫ ∞

−∞
dk′
[
bk′gk′ + b†k′g

∗
k′

]
, gk

)
= bk

Putting these together we have a relation between the two sets of creation and annihilation
operators:

bk =

∫ ∞

−∞
dk′
[
α∗
kk′ak′ − β∗

kk′a
†
k′

]
(B.19)

B.3.3 Number Operator

If at least one of fk or gk correspond to frames that are not inertial with respect to each other then
we cannot expect these frames to have the same notion of the vacuum. Lets call the vacuum in the
frame described by the modes fk, |0f⟩. This means that the corresponding creation and annihilation

operators obey: ak |0f⟩ = 0 and ⟨0f | a†k = 0. If the two frames do not have the same notion of
the vacuum we cannot expect that bk |0f⟩ = 0. This means that if we calculate the expectation

value of the number operator in the frame of reference of the gk modes, ⟨N (g)
k ⟩ = ⟨0f | g†kgk |0f⟩, we

will get a non zero result. Since the expectation value of the number operator corresponds to the
number of particles in the state, this means that the observers in the frame with the gk modes,
will see the vacuum of the fk modes to have a spectrum of particles.

We can see how the spectrum of particles depends on the quantities we calculated earlier, using
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our expression for bk in terms of the ak in B.19:

⟨N (g)
k ⟩ = ⟨0f | g†kgk |0f⟩

= ⟨0f |
∫ ∞

−∞
dk′
∫ ∞

−∞
dp
[
αkk′a

†
k′ − βkk′ak′

] [
α∗
kpap − β∗

kpa
†
p

]
|0f⟩

=

∫ ∞

−∞
dk′
∫ ∞

−∞
dp ⟨0f |

[
βkk′β

∗
kpak′a

†
p

]
|0f⟩

Where we have used the fact that ak |0f⟩ = 0 and ⟨0f | a†k = 0. We can then use the fact that

ak and a†k must obey the commutation relations [ak, a
†
k′ ] = δ(k − k′) =⇒ ⟨0f | ak′a†p |0f⟩ =

⟨0f | δ(k′ − p) + a†pap |0f⟩ = δ(k′ − p) ⟨0f | |0f⟩ = δ(k′ − p). This means that:

⟨N (g)
k ⟩ =

∫ ∞

−∞
dpβkpβ

∗
kp =

∫ ∞

−∞
dpβkpβ

†
pk

=⇒ ⟨N (g)
k ⟩ =

∫ ∞

−∞
dp|βkp|2 (B.20)

B.4 Killing Vectors

We want to be able to quantify how tensors change at different points in space. Unfortunately
we cannot directly compare tensors at different points, so we have to take a different approach. If
we instead think not of passive transformations but of active transformations, whereby we keep
the points fixed and instead continuously change the co-ordinate system. The resulting derivative
takes the form of the Lie Derivative.

B.4.1 Lie Derivative

This continuous change of the co-ordinate system can be carried out by defining the so-called one
parameter subgroups. A one parameter subgroup of diffeomorphism Ft(x) with associated vector

field ξ(x) is defined to act on smooth tensors T = (T
i1,..,ip
j1,...,jq

) of type (p, q) as follows:

(FtT )
i1,..,ip
j1,...,jq

(x) = T
k1,..,kp
l1,...,lq

(y)
∂yl1

∂xj1
· · · ∂y

l1

∂xjq
∂xi1

∂yk1
· · · ∂x

ip

∂ykp

Where yi = F i
t (x) = exp(tξi).

The Lie derivative of a tensor T = (T
i1,..,ip
j1,...,jq

) along a vector field ξ, can then be defined as the
tensor LξT given by:

LξT i1,..,ipj1,...,jq
=

[
d

dt
(FtT )

i1,..,ip
j1,...,jq

]
t=0

We can define an explicit formula for Lξ by expanding yi = F i
t (x) ≈ xi+ tξi(x) up to leading order

and carrying out the derivative. This results in:

LξT i1...ipj1...jq
= ξa

∂T
i1...ip
j1...jq

∂xa
+ T

ai2...ip
j1...jq

∂ξi1

∂xa
+ · · ·+ T

i1...ip−1a
j1...jq

∂ξip

∂xa

− T
i1...ip
aj2...jq

∂ξa

∂xj1
− T

i1...ip
j1aj3...jq

∂ξa

∂xj2
− · · · − T

i1...ip
j1...jq−1a

∂ξa

∂xjq
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For 2−Tensors, like the metric gµν this reduces to:

Lξgµν = ξσ∂σgµν + gσν∂µξ
σ + gµσ∂νξ

σ (B.21)

We can then transport this into an expression of co-variant derivatives, using metric comparability,
which means ∇σgµν = 0. This way from the definition of the co-variant derivative we have:

∇σgµν = ∂σgµν − Γρσνgρν − Γρµσgµρ = 0

∇µξ
σ = ∂µξ

σ + Γσµρξ
ρ

∇νξ
σ = ∂νξ

σ + Γσνρξ
ρ

So re-arranging these expressions for the 4−derivative terms and plugging into B.21. we have:

Lξgµν = ξσΓρσνgρν + ξσΓρµσgµρ + gσν∇µξ
σ − gσνΓ

σ
µρξ

ρ + gµσ∇νξ
σ − gµσΓ

σ
νρξ

ρ

= gσν∇µξ
σ + gµσ∇νξ

σ

= ∇µξν +∇νξµ (B.22)

Where we have relabeled indices to cancel terms.

B.4.2 Killing Vector Definition

If we investigate the value of the metric along some curve generated by a vector ξ and the resulting
values are the is the exact same, then intuitively we understand that there is a symmetry associated
with that curve. This can easily be quantified by the Lie derivative along this curve being zero:
Lξgµν = 0. We say that the vector generating this curve is called a Killing Vector 2. We can then
see from B.22 that the condition for the generating vector ξ to be a Killing vector is:

Lξgµν = 0 =⇒ ∇µξν +∇νξµ = 0 (B.23)

This is often called the Killing Equation.

B.4.3 Conserved Quantities

From our familiarity with Noether’s Theorem we expect symmetries to have associated conserved
quantities. The same is true for Killing vectors. If xµ(λ) is a geodesic with a tangent vector
Uµ = dxµ

dλ
and the metric has a killing vector ξµ. Then we can see that if we transport the quantity

ξµU
µ = ξµ

dxµ

dλ
is conserved along the geodesic:

∇U (ξµU
µ) = Uν∇ν (ξµU

µ) = Uν (∇νξµ)U
µ + Uνξµ (∇νU

µ)

We can then recall that geodesics satisfy, Uν∇νU
µ = 0, so the second term here is 0. Then for the

first term we can re-write it as:

Uν (∇νξµ)U
µ =

1

2
UµUν (∇νξµ +∇µξν) = 0

Which we can recognize is 0, as ξ is a Killing vector. So ξµ
dxµ

dλ
is indeed a conserved quantity along

this geodesic.

2Named after Wilhelm Killing
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B.4.4 Killing Vectors from the Metric

If the metric in a certain co-ordinate system is independent of one of the co-ords xα, then the
vector K = ∂α is a killing vector. We will show why this is true now. The components of K must
be Kµ = δµα, Kµ = gµνK

ν = gµα∗ , where we have an asterisk on the α so that we do not confuse
it with a regular index. We can then plug this into the killing equation B.23 to see if the result
vanishes:

LKgµν = ∇µKν +∇νKµ = ∂µKν + ∂νKµ − 2ΓσµνKσ

= ∂µgνα∗ + ∂νgµα∗ − 2Γσµνgσα∗

= ∂µgνα∗ + ∂νgµα∗ − gσλgσα∗ (∂µgλν + ∂νgλµ − ∂λgµν) , (gσλgσα∗ = δλα∗)

= ∂µgνα∗ + ∂νgµα∗ − ∂µgα∗ν − ∂νgα∗µ + ∂α∗gµν

= ∂α∗gµν = 0

Where we have used the fact that the metric is independent of the co-ordinate α so ∂α∗gµν = 0.
This shows that K = ∂α is indeed a Killing vector. The converse of this statement is also true,
if there exists a killing vector then there must exist a co-ordinate system in which the metric is
independent of one of the co-ords.
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Appendix C
Anti-Evaporation

C.1 Near Maximal Mass Metric

Here we show how the near maximal mass metric 4.3 comes from the Schwartzchild de Sitter metric
4.1. We start by expanding f(r) = 1− 2µ

r
− Λ

3
r2 up to cubic order in ϵ. We can plug in the r(χ)

co-ordinate from 4.2 as well as µ =
√

1−3ϵ2

9Λ
to see that:

f(r) = 1− 2

√
1− 3ϵ2

9Λ

√
Λ

1− ϵ cosχ− 1
6
ϵ2

− Λ

3Λ

[
1− ϵ cosχ− 1

6
ϵ2
]2

= 1− 2

3

√
1− 3ϵ2

1− ϵ cosχ− 1
6
ϵ2

− 1

3

[
1− 2ϵ cosχ− 2

6
ϵ2 + ϵ2 cos2 χ+

2

6
ϵ3 cosχ

]
+O(ϵ4) (C.1)

For the fraction in the second term we can notice that it takes the form of a geometric sum:

1

1− ϵ cosχ− 1
6
ϵ2

=
1

1− (ϵ cosχ+ 1
6
ϵ2)

=
∞∑
n=0

(ϵ cosχ+
1

6
ϵ2)n

= 1 + (ϵ cosχ+
1

6
ϵ2) + (ϵ cosχ+

1

6
ϵ2)2 + ϵ3 cos3 χ+O(ϵ4)

= 1 + ϵ cosχ+

(
1

6
+ cos2 χ

)
ϵ2 + cosχ(

1

3
+ cos3 χ)ϵ3 +O(ϵ4)

We can then plug this into the expansion C.1 along with the fact that
√
1− 3ϵ2 = 1− 3

2
ϵ2+O(ϵ3),

to get:

f(r) =1− 2

3

[
1− 3

2
ϵ2
] [

1 + ϵ cosχ+

(
1

6
+ cos2 χ

)
ϵ2 + cosχ(

1

3
+ cos3 χ)ϵ3

]
− 1

3

[
1− 2ϵ cosχ+ (cos2 χ− 1

3
)ϵ2 +

1

3
cosχϵ3

]
+O(ϵ4)

=1− 2

3

[
3

2
+ (0)ϵ+ (

3

2
cos2 χ− 3

2
)ϵ2 + (−3

2
cosχ+ cos3 χ+

1

3
cosχ+

1

6
cosχ)ϵ3

]
+O(ϵ4)

= sin2 χϵ2 − 2

3
cosχ(cos2 χ− 1)ϵ3 +O(ϵ4)

=⇒ f(r) = sin2 χ(1 +
2

3
ϵ cosχ)ϵ2 +O(ϵ4) (C.2)

If we then look at the co-ordinate relations for t and r in 4.2, then we can see that:

dt =
dψ

ϵ
√
Λ
, dr = − 1√

Λ
ϵ sinχdχ
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This means we can sub these expressions along with the expanded f(r) in C.2 to the original
metric 4.1:

ds2 = −
(
1 +

2

3
ϵ cosχ

)
sin2 χ

ϵ2dψ2

ϵ2Λ
+

1

Λ

ϵ2 sin2 χdχ2

(1 + 2
3
ϵ cosχ) sin2 χϵ2

+
1

Λ
(1 +

2

3
ϵ cosχ)2dΩ2

So to leading order in ϵ the metric is indeed given by 4.3.

C.1.1 Embedding co-ordinates

in this section we show the embedding co-ordinates 4.7 match matches the first two terms of the
metric 4.6. Taking derivatives of 4.7 we see:

dX0 =
1√
Λ

[
−zdz√
1− z2

sinhψ +
√
1− z2 coshψd

]
dX1 =

1√
Λ

[
−zdz√
1− z2

coshψ +
√
1− z2 sinhψdψ

]
dX2 =

z√
Λ

So writing the combination −dX2
0 + dX2

1 + dX2
2 :

−dX2
0 + dX2

1 + dX2
2 =

1

Λ

[
− z2dz2

1− z2
sinh2 ψ +

zdzdψ√
1− z2

coshψ sinhψ − (1− z2) cosh2 ψdψ2 + dz2

+
z2dz2

1− z2
cosh2 ψ − zdzdψ√

1− z2
coshψ sinhψ + (1− z2) sinh2 ψdψ2 + dz2

]
=
1

Λ

[
−(1− z2)dψ2 +

z2dz2

1− z2
+ dz2

]
=
1

Λ

[
−(1− z2)dψ2 +

dz2

1− z2

]
Which is exactly the first two terms in 4.6.

C.2 Action with Quantum Effects

C.2.1 Classical Trace of Stress Tensor

Here we will show that the classical consideration of a conformally invariant action leads to a
traceless stress energy tensor Tµν . An action S [gµν , ϕ, ∂µϕ] (suppressing derivative for brevity) is
considered conformally invariant if S[gµν , ϕ, ∂µϕ] = S[g̃µν , ϕ̃, ∂µϕ̃] + surface integral. Where:

g̃µν = Ω(x)gµν(x)

ϕ̃ = Ωp(x)ϕ(x)

Here Ω is some arbitrary scaling function and p a dimensionless constant. To see how ϕ and gµν
vary with these transformations we can write the scaling infinitesimally as:

Ω(x) ≈ 1 + λ(x), |λ(x)| << 1

- 70 -



Quantum Aspects of Black Holes in de Sitter Spacetime Appendix C. Anti-Evaporation

With this the variations of ϕ and gµν are:

δϕ = ϕ̃− ϕ = pλ(x)ϕ(x)

δgµν = g̃µν − gµν = λ(x)gµν

δ(∂µϕ) = ∂µϕ̃− ∂µϕ = ∂µ[(1 + pλ)ϕ]− ∂µϕ = ∂µ(pλϕ) = ∂µ(δϕ)

With this the variation of the action S [gµν , ϕ] can be considered:

0 = δS =

∫
d4x

[
δS

δϕ
δϕ+

δS

δ(∂µϕ)
∂µ(δϕ) +

δS

δgµν
δgµν

]
=

∫
d4x

[(
δS

δϕ
− ∂µ

[
δS

δ(∂µϕ)

])
δϕ+

δS

δgµν
δgµν

]
Where we have integrated by parts. If we then assume ϕ satisfies the Euler-Lagrange equation of
motion, then we are left with:

0 =

∫
d4x

δS

δgµν
gµνλ(x)

Since λ(x) is arbitrary, this implies that δS/δgµν = 0, but we can recall (see [6]) that the definition
of the stress energy tensor in GR is:

T µν ≡ − 2√
−g

δS

δgµν
(C.3)

This means the action being conformally invariant implies the trace of the stress energy tensor
vanishes classically:

gµνT
µν = 0

C.2.2 Path Integral Classical Limit

The path integral 4.16 leads to a natural interpretation of the classical limit of quantum mechanics.
The exponent in the integral should be unitless so in SI units when ℏ ̸= 1, the exponent is iSℏ

1.
Then in the classical limit, ℏ → ∞ and this integral oscillates very fast. This allows us to use
the stationary phase approximation to evaluate this integral. This is the idea that fast oscillating
terms such as ei

S
ℏ when integrated over add up points that are located around the unit circle in

the complex plane. This means the integral which adds up these points will tend towards 0 the
faster this term oscillates as adding up all the points on the unit circle results in the value at its
center, namely 0. The only exception to this is when the exponential happens to not be oscillating
quickly. This occurs at the points where the action S does not change much when we vary the
parameter the path integral is integrating over. In our case this is the field φ. These points are
the only non vanishing points and hence the only points that contribute to the integral. This is
nothing more then the action principle. In the classical limit the path integral implies that the
only non-vanishing field configuration is the the one that extremizes the action. The same holds
for any expectation values like 4.17, in the classical limit the only expectation value that survives
is the energy momentum tensor for the field configuration that minimizes the action.

1Recall that the action has units of angular momentum, same as ℏ
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C.2.3 Ostrogradsky Lagrangian

The purpose of this section is to derive the equations of motion for a Lagrangian density that
depends on second derivatives.

One Dimensional Model

Let us first consider a one dimensional classical example for a system with a co-ordinate q. We
do this to get an idea for what introducing higher order derivatives to the Lagrangian, before
examining the field theory case. If we have a Lagrangian L that is a function of both q and q̇ as
well as q̈ (L = L(q, q̇, q̈)), then variation of the Lagrangian δL will contain a term of δq̈ 2. i.e.:

δL =
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂q̈
δq̈

This means when we vary the action which is defined as S =
∫
Ldt, then we must have that:

δS =

∫
δLdt =

∫
dt

[
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂q̈
δq̈

]
We can then do the usual trick of integrating by parts and ignoring the terms which must vanish
at the boundaries. We integrate the second term in the integral by parts once picking up a minus
sign, but for the last term we must integrate by parts twice hence it does not change sign. This
leaves us with:

δS =

∫
dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)
+
d2

dt2

(
∂L

∂q̈

)]
δq

So enforcing the action principle that δS = 0 is equivalent to the following equations of motion:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
+
d2

dt2

(
∂L

∂q̈

)
= 0

Lagrangian Density

We now wish to extend this to the Lagrangian density. The natural extension of a Lagrangian
density L(ϕ, ∂µ), is L(ϕ, ∂µ, ∂µ∂νϕ), but since we know a priori that L = L(ϕ, ∂µ, ∂2ϕ), where
∂2 = ηµν∂µ∂ν , we can instead proceed with this special case, as it is simpler. Following the
procedure of the above one dimensional case, the variation of L(ϕ, ∂µ, ∂2ϕ) is:

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ) +

∂L
∂(∂2ϕ)

δ(∂2ϕ)

Then just as before when we place this in the action we have to integrate by parts, with the middle
term picking up a minus sign and the last staying the same. Then imposing δS = 0 is equivalent
to the equation of motion:

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
+ ∂2

(
∂L

∂(∂2ϕ)

)
= 0 (C.4)

2This is the same as expanding the total derivative of a multivariable function.
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C.3 Metric Perturbation

We start by calculating the form of the ∂2ϕ and (∂2ϕ) terms, up to first order in epsilon. This can
be done by considering derivatives of 4.36:

∂t(e
2ϕ) = 2Λ2ϵσ̇ cosx = 2ϕ̇e2ϕ =⇒ ϕ̇ =

ϵσ̇ cosx

1 + 2ϵσ cosx

∂x(e
2ϕ) = −2Λ2ϵσ sinx = 2ϕ′e2ϕ =⇒ ϕ′ = − ϵσ sinx

1 + 2ϵσ cosx

(C.5)

This means that:

ϕ̈ =
ϵσ̈ cosx

1 + 2ϵσ cosx
+O(ϵ2), ϕ′′ = − ϵσ cosx

1 + 2ϵσ cosx
+O(ϵ2)

ϕ̇2 = O(ϵ2), ϕ′′ = O(ϵ2)
(C.6)

So we can write ∂2ϕ and (∂2ϕ) as:

(∂ϕ)2 = −ϕ̇2 + ϕ′2 = O(ϵ2)

∂2ϕ = −ϕ̈+ ϕ′′ =
ϵσ̈ cosx

1 + 2ϵσ cosx
− ϵσ cosx

1 + 2ϵσ cosx
+O(ϵ2)

= −ϵ cosx [σ̈ + σ]

1 + 2ϵσ cosx
+O(ϵ2) (C.7)

We can now use these values to plug into the equations of motion. As stated before we do not
need to perturb the one sphere radius e2ρ as it will not enter the equations of motion to first order
in ϵ. However, since the equations of motion couple ϕ and ρ, the field ρ will still be altered such
that ∂2ρ does not take on the same value we had for it earlier in the non-perturbed case 3. We
will now instead use the ϕ equation of motion 4.26 to solve for ∂2ρ in terms of the other terms,
containing ϕ. We can manipulate 4.26 two write:

∂2ρ =
∂2ϕ− (∂ϕ)2 − Λe2ρ

1− wκ
4
Λ2 [1 + 2ϵσ cosx]

We can then expand this to first order in ϵ using the above calculated values. (∂ϕ)2 = O(ϵ2) so
we can ignore it, all that remains is to plug in ∂2ϕ from C.7 and expand the denominator using
1

a+x
= 1

a

(
1− x

a

)
+O(x2):

∂2ρ =

[
−ϵ cosx [σ̈ + σ]

1 + 2ϵσ cosx
− Λe2ρ

] 1 + ϵσ cosx

(1−wκ
4
Λ2)

wκ
2
Λ2(

1− wκ
4
Λ2

) +O(ϵ2)

=

[
−ϵ cosx [σ̈ + σ]

1 + 2ϵσ cosx
− Λ(

1− wκ
4
Λ2

)e2ρ − Λe2ρ
ϵσ cosx(

1− wκ
4
Λ2

)2 wκ2 Λ2

]
+O(ϵ2)

We calculate ∂2ρ as when we use the Z equation of motion 4.24 to eliminate Z from the ρ equation
of motion 4.27 we are left with a term of the form κ

2
e2ϕ∂2ρ, With the above calculation of ∂2ρ this

becomes:

κ

2
e2ϕ∂2ρ =

κΛ2

2

[
−ϵ cosx [σ̈ + σ]

1 + 2ϵσ cosx
− Λ(

1− wκ
4
Λ2

)e2ρ[1 + 2ϵσ cosx]− Λe2ρ
ϵσ cosx(

1− wκ
4
Λ2

)2 wκ2 Λ2

]
+O(ϵ2)

3Recall we had ∂2ρ = −Λ1e
2ρ
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With this as well as C.7, (∂ϕ)2 = O(ϵ2) and the ansatz e2ρ = 1
Λ1 cos2 t

we can write the ρ equation
of motion 4.27 as:

0 =
(
1− wκ

2
Λ2 [1 + 2ϵσ cosx]

) ϵ cosx [σ̈ + σ]

1 + 2ϵσ cosx
− κΛ

2

ϵ cosx [σ̈ + σ](
1− wκ

4
Λ2

)
− κ

2Λ1

Λ2

cos2 t

[
Λ [1 + 2ϵσ cosx](

1− wκ
4
Λ2

) +
ΛΛ2

wκ
2
ϵσ cosx(

1− wκ
4
Λ2

) ]+ 1

cos2 tΛ1

[Λ− Λ2 [1 + 2ϵσ cosx]] +O(ϵ2)

Some terms are not full expanded up to O(ϵ2), so doing so we have:

0 =

[
(1− wκ

4
Λ2)−

κΛ2

2
(
1− wκ

4
Λ2

)] [σ̈ + σ] ϵ cosx+
1

cos2 t

[
−κΛ2Λ

2Λ1

1(
1− wκ

4
Λ2

) + Λ

Λ1

− Λ2

Λ1

+ϵσ cosx

(
−κΛ2Λ

Λ1

1(
1− wκ

4
Λ2

) − wκ2Λ2
2Λ

4Λ1

1(
1− wκ

4
Λ2

)2 − 2Λ2

Λ1

)]
+O(ϵ2)

We can then make use of some relations to simplify this expression. From the second relation
between Λ1 and Λ2 4.33, we can write that

(
1− wκ

4
Λ2

)
= Λ

Λ1
. This allows us to write our expression

as:

0 =

[
Λ

Λ1

− κΛ2Λ1

2Λ

]
[σ̈ + σ] ϵ cosx+

1

cos2 t

−κΛ2

2
+

Λ

Λ1

− Λ2

Λ1︸ ︷︷ ︸
0

+ϵσ cosx

(
−κΛ2 −

wκ2Λ2
2Λ1

4Λ
− 2Λ2

Λ1

)
Where we have used the first relation between Λ1 and Λ2, 4.32 to write κΛ2

2
+ Λ

Λ1
− Λ2

Λ1
= 04. This

leaves us with only terms proportional to ϵ cosx, so we can cancel them all, leaving us with, to
leading order in ϵ:

σ̈

σ
=

a

cos2 t
− 1 (C.8)

Where:

a =
κΛ2 +

wκ2Λ2
2Λ1

4Λ
+ 2Λ2

Λ1

Λ
Λ1

− κΛ2Λ1

2Λ

We can feed this along with the definitions of Λ1 and Λ2 4.34 and 4.35 into Mathematica, which
tells us that a is given by 4.38. Matching the result found in Bousso and Hawking’s paper.

4If one also perturbs the one sphere radius e2ρ, they would find that to first order in epsilon the perturbation is
proportional to this equation, and hence does not contribute to the equation of motion.
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Dimension Reduction of Ricci scalar

In[1]:= InverseMetric[g_] := Simplify[Inverse[g]]

ChristoffelSymbol[g_, xx_] := Blockn, ig, res, n = Length[g];

ig = InverseMetric[g];

res = Table(1 / 2) * Sumigi, s * -Dgj, k, xx〚s〛 + Dgj, s, xx〚k〛 + Dg〚s, k〛, xxj, {s, 1, n},
i, 1, n, j, 1, n, {k, 1, n};

Simplify[res]
RiemannTensor[g_, xx_] := Block{n, Chr, res}, n = Length[g];

Chr = ChristoffelSymbol[g, xx];

res = TableDChri, k, m, xx〚l〛 - DChri, k, l, xx〚m〛 + SumChri, s, l * Chr〚s, k, m〛, {s, 1, n} -
SumChri, s, m * Chr〚s, k, l〛, {s, 1, n}, i, 1, n, {k, 1, n}, {l, 1, n}, {m, 1, n};

Simplify[res]
RicciTensor[g_, xx_] := BlockRie, res, n, n = Length[g];

Rie = RiemannTensor[g, xx];

res = TableSumRies, i, s, j, {s, 1, n}, i, 1, n, j, 1, n;
Simplify[res]

RicciScalar[g_, xx_] := BlockRicc, ig, res, n, n = Length[g];

Ricc = RicciTensor[g, xx];

ig = InverseMetric[g];

res = Sumigs, i ×Riccs, i, {s, 1, n}, i, 1, n;
Simplify[res]

4D-Metric:

In[6]:= xx = {t, x, θ, ψ};

g = -E^ 2 ρ[x, t], 0, 0, 0, 0, E^ 2 ρ[x, t], 0, 0,

0, 0, E^ -2 ϕ[x, t], 0, 0, 0, 0, E^ -2 ϕ [x, t] Sin[θ ]^2;

RicciScalar[g, xx] // Expand

Out[8]= 2 ⅇ
-2 ρ[x,t]+2 (ρ[x,t]+ϕ[x,t])

+ 6 ⅇ
-2 ρ[x,t]

ϕ
(0,1)

[x, t]
2
+ 2 ⅇ

-2 ρ[x,t]
ρ
(0,2)

[x, t] -

4 ⅇ
-2 ρ[x,t]

ϕ
(0,2)

[x, t] - 6 ⅇ
-2 ρ[x,t]

ϕ
(1,0)

[x, t]
2
- 2 ⅇ

-2 ρ[x,t]
ρ
(2,0)

[x, t] + 4 ⅇ
-2 ρ[x,t]

ϕ
(2,0)

[x, t]

2D Metric

In[9]:= xx = {t, x}; g = -E^ 2 ρ[x, t], 0, 0, E^ 2 ρ[x, t];

RicciScalar[g, xx] // Expand

Out[10]=

2 ⅇ
-2 ρ[x,t]

ρ
(0,2)

[x, t] - 2 ⅇ
-2 ρ[x,t]

ρ
(2,0)

[x, t]
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