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The [second] law that entropy always increases, holds, I think, the supreme position
among the laws of Nature. . . . if your theory is found to be against the second law of
thermodynamics I can give you no hope; there is nothing for it but to collapse in

deepest humiliation.”

- Sir Arthur Stanley Eddington
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Statistical Physics I 1 Thermodynamics

1 Thermodynamics

1.1 System

• In thermodynamics we usually deal with a macroscopic system, comprising of 𝑁 constituents, where 1 >>
1√
𝑁 . The properties of these systems then arise as a result of symmetries and fundamental laws of physics.

1.2 Static states

• Macroscopic variables sense only coarse spatial averages of the coordinates describing the motion of the
constituents.

There are naturally two types of averaging, over time and over distance. These are implicit in macroscopic
variables.

1.3 Simple systems

• Simple systems are microscopically homogeneous , isotropic, uncharged and large enough so that we need
not take into account surface/boundary effects.

1.4 Thermodynamic parameters

• Volume 𝑉 = ∑𝑚
𝑗=1 𝑉𝑗 for j sub-systems.

• {𝑁𝑖}, Chemical composition of the system, 𝑖 denotes the type of constituent (i.e. different molecules).

• Internal Energy 𝐸, (or 𝑈 ), is the energy contained in the system excluding the center of mass motion and
an external energy the system has as a whole due to external forces.

These parameters are known as extensive parameters (meaning they scale with the system), otherwise they
would be known as intensive parameters.

1.5 Postulate 1

• There exists states called equilibrium states of simple thermodynamic systems, that are completely char-
acterised by the values of 𝐸, 𝑉 and {𝑁1, 𝑁2, ..., 𝑁𝑟 } for systems comprised of 𝑟 different species of constituents.

1.6 Walls and Constraints/ Boundaries

• Walls/Boundaries separate the system from the environment and provide boundary conditions. Processes
are initiated and the extensive parameters changed by the manipulation of the walls/boundaries.

1.7 Types of Boundaries

• A wall that is impermeable to the flow of heat is adiabatic , other wise it is di-thermal.

• A wall that does not allow mechanical work ismechanically isolated, (Volume preserved).

• A wall that does not allow chemical work is chemically isolated, ({𝑁𝑖} preserved).

- 5 -
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1.8 Postulate 2

• There exists walls, adiabatic, with the property that the work done in taking an adibabatically enclosed
system between two given states is determined entirely by the States and is independent of external con-
ditions.

1.9 Quasi state process

• A quasi state process is a process that preserves the equilibrium of the system through out.

1.10 1st Law of thermodynamics

• The heat flux to a system in any process that leaves the number of constituents unchanged is simply the
difference in the internal energies of the initial and final states.

For simple systems and 𝑁 = constant during the process, if we define positive work to be work done by
the system, then:

𝑑𝑊 = 𝑃𝑑𝑉 (1.1)

Here 𝑃 is the pressure and 𝑉 is the volume. The 𝑑 in the differential is there to note that this is not an exact
differential.

The first law then tells us that:

𝑑𝑄 = 𝑑𝐸 + 𝑑𝑊 = 𝑑𝐸 + 𝑃𝑑𝑉 −
𝑟
∑
𝑖=1

𝜇𝑖𝑑𝑁𝑖 (1.2)

Here the 𝜇𝑖 are the different chemical potentials of the constituents 𝑖.

1.11 Exact differential

• An exact differential of a function 𝑓 (𝑎1, 𝑎2, ..., 𝑎𝑛) is given by:

𝑑𝑓 ≡
𝑛
∑
𝑖=1

(
𝜕𝑓
𝜕𝑎𝑖

)𝑑𝑎𝑖 (1.3)

This also means that:

𝜕2𝑓
𝜕𝑎𝑖𝜕𝑎𝑗

=
𝜕2𝑓

𝜕𝑎𝑗𝜕𝑎𝑖
, ∀ 𝑖, 𝑗 (1.4)

Anything of not of this form is inexact and denoted with a 𝑑

- 6 -
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1.12 Basic problem in thermodynamics

• The basic problem in thermodynamics is the determinism of the equilibrium state resulting after the removal
of all internal constraints in a closed( ⟹ totally isolated) composite system.

1.13 2nd Law of thermodynamics

• There exists a function 𝑆 (entropy) of the extensive parameters of any composite system defined for equilib-
rium states and has the property that it is maximised over the values assumed by the extensive parameters
in the absence of internal constraints.

• This function 𝑆(𝐸, 𝑉 , 𝑁 ) is called the fundamental equation or relation.

1.14 Further restrictions on 𝑆

• The entropy of any composite system is additive over its subsystems (i.e. 𝑆 is extensive itself)

• Also 𝑆 is continuous, differentiable and monotonically increasing function of the energy 𝐸. This means that
for 𝑟 subsystems:

• We can also find that if we scale our system by 𝜆, then according to the above restrictions:

𝑆(𝐸, 𝑉 , 𝑁 ) → 𝑆(𝜆𝐸, 𝜆𝑉 , 𝜆𝑁 ) = 𝜆𝑆(𝐸, 𝑉 , 𝑁 ) (1.5)

This makes 𝑆 a homogeneous degree 1 function.

1.15 Homogeneous degree 𝑘 function

• A function 𝑓 (𝜆𝑥1, 𝜆𝑥2, ..., 𝜆𝑥𝑛) = 𝜆𝑘𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) is said to be homogeneous of degree 𝑘.

1.16 3rd Law of thermodynamics

•

𝜕𝐸
𝜕𝑆

= 0 ⟹ 𝑆 = 0 (1.6)

Here the quantity 𝜕𝐸
𝜕𝑆 is essentially temperature.

1.17 Intensive parameters

• From the fundamental equation we can theory solve 𝐸 = 𝐸(𝑆, 𝑉 , 𝑁1, 𝑁2, ..., 𝑁𝑟), 𝐸 then must satisfy:

𝐸(𝜆𝑆, 𝜆𝑉 , 𝜆𝑁1, 𝜆𝑁2, ..., 𝜆𝑁𝑟) = 𝜆𝐸(𝑆, 𝑉 , 𝑁1, 𝑁2, ..., 𝑁𝑟) (1.7)

- 7 -
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• Then taking the total derivative:

𝑑𝐸 = (
𝜕𝐸
𝜕𝑆 )

𝑑𝑆 + (
𝜕𝐸
𝜕𝑉 ) 𝑑𝑉 +

𝑟
∑
𝑖=1 (

𝜕𝐸
𝜕𝑁𝑖)

𝑑𝑁𝑖 (1.8)

Then we define the intensive parameters:

𝑇 ≡ (
𝜕𝐸
𝜕𝑆 )

, − 𝑃 ≡ (
𝜕𝐸
𝜕𝑉 ) , 𝜇𝑖 ≡ (

𝜕𝐸
𝜕𝑁𝑖)

(1.9)

These are intensive as they do not change under re-scaling of the system. Thus they can be consider
homogeneous functions of degree 0 and are all functions of 𝑆, 𝑉 , 𝑁 . Then the total differential can be
written as:

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +
𝑟
∑
𝑖=1

𝜇𝑖𝑑𝑁𝑖 (1.10)

• This can be recognised as the first law of thermodynamics where −𝑃𝑑𝑉 is the differential of the mechanical
work and 𝜇𝑖𝑑𝑁𝑖 is the differential of the chemical work.

1.18 Gibbs Duhem relation

• Choosing 𝜆 = 1
𝑁𝑘
, then 𝑇 → 𝑇 ( 𝐸

𝑁𝑘
, 𝑉
𝑁𝑘
, 𝑁1
𝑁𝑘
, 𝑁2
𝑁𝑘
, ..., 1, ..., 𝑁𝑟

𝑁𝑘
) = 𝑇 (𝐸, 𝑉 , 𝑁1, 𝑁2, .., 𝑁𝑟). Thus we can see the

necessary independent parameters are 𝑟 + 1 instead of 𝑟 + 2. This implies there is a relation between them.

This relation is the Gibbs-Duhem relation and to find this we need to use a property of homogeneous
functions.

1.19 Euler’s theorem for homogeneous functions

• If 𝑓 (𝜆𝑥1, 𝜆𝑥2, ..., 𝜆𝑥𝑛) = 𝜆𝑘𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛), then:

𝑘𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) =
𝑛
∑
𝑖=1 (

𝜕𝑓
𝜕𝑥𝑖)

𝑥𝑖 (1.11)

• Applying this theorem:

𝐸(𝑆, 𝑉 , 𝑁1, 𝑁2, ..., 𝑁𝑟) = (
𝜕𝐸
𝜕𝑆 )

𝑆 + (
𝜕𝐸
𝜕𝑉 )𝑉 +

𝑟
∑
𝑖=1 (

𝜕𝐸
𝜕𝑁𝑖)

𝑁𝑖 (1.12)
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• Thus:

𝐸 = 𝑇𝑆 − 𝑃𝑉 +
𝑟
∑
𝑖=1

𝜇𝑖𝑁𝑖 (1.13)

1.20 Solving the Gibbs-Duhem relation

• To do this we take the total differential of the above equation and see:

𝑑𝐸 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑃𝑑𝑉 − 𝑉𝑑𝑃 +∑
𝑖
𝜇𝑑𝑁𝑖 +∑

𝑖
𝑁𝑖𝑑𝜇𝑖 (1.14)

But by the first law this must be equal to 1.2. Thus we get:

𝑆𝑑𝑇 − 𝑉 𝑑𝑃 +∑
𝑖
𝑁𝑖𝑑𝜇𝑖 = 0 (1.15)

• This is our Gibb’s-Duham relation.

1.21 Thermodynamic configuration space

• We define a thermodynamic configuration space.

For a simple system such a space is spanned by co-ordinate axes that correspond to 𝑆, 𝐸, 𝑉 , 𝑁1, 𝑁2, ..., 𝑁𝑟 .
Then 𝑆(𝐸, 𝑉 , 𝑁1, 𝑁2, ..., 𝑁𝑟) defines a surface in this space that conforms to various requirements that 𝑆 itself
satisfies.

Any system will proceed from a state 𝐴 (point 𝐴 on the surface of 𝑆) to state 𝐵, iff 𝑆 is maximised at 𝐵
compared to all other states.

If we have 𝑆𝑎 < 𝑆𝑏 then the process has a unique direction from lower to higher entropy and is irreversible.

It is possible for the process to be reversible if Δ𝑆 = 0.

1.22 Fundamental relation

• We can consider either 𝐸(𝑆, 𝑉 , 𝑁𝑖) or 𝑆(𝐸, 𝑉 , 𝑁𝑖) to be fundamental relations. But we cannot however, con-
sider 𝐸(𝑇 , 𝑉 , 𝑁𝑖) or 𝑆(𝑇 , 𝑉 , 𝑁𝑖) to be fundamental as by the definition of 𝑇 we must take a derivative and
there we know we loose information relating to what is held constant.

1.23 Free expansion

• If a system changes by free expansion this means that 𝑑𝑊 = 0 through out this process.

- 9 -
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1.24 Thermodynamic Potentials

• We can construct functions of intensive parameters that give as much information as 𝑆 and 𝐸, i.e. they
are fundamental relations. These potentials are Legendre transforms of either 𝐸(𝑆, 𝑉 , 𝑁𝑖) or 𝑆(𝐸, 𝑉 , 𝑁𝑖).
Through examining their differentials one can find many partial derivative relations. These potentials are
extensive functions. Just as in mechanics, the system will tend towards a lower value of a potential and at
equilibrium, under the constraints as listed below, the potential will take the unchanging minimum value.

1.24.1 Helmholtz Free

– This is (𝑇 , 𝑉 , 𝑁𝑖) and is given by:

 = 𝐸 − 𝑇𝑆 (1.16)

We use  in the case of an isothermal process along with there being chemical and mechanical isola-
tion.  also has:

−𝑃 = (
𝜕𝐹
𝜕𝑉 ) , − 𝑆 = (

𝜕𝐹
𝜕𝑇 )

, 𝜇𝑖 = (
𝜕𝐹
𝜕𝑁𝑖)

(1.17)

1.24.2 Gibbs free

– This is (𝑇 , 𝑃 , 𝑁𝑖) and is given by:

 = 𝐹 + 𝑃𝑉 (1.18)

We use  in the case of an isothermal and Isobaric system along with chemical and mechanical isola-
tion.  also has:

𝑉 = (
𝜕𝐺
𝜕𝑃 )

, − 𝑆 = (
𝜕𝐺
𝜕𝑇 )

, 𝑁𝑖 = (
𝜕𝐺
𝜕𝜇𝑖)

(1.19)

1.24.3 Grand canonical potential

– This is  (𝑇 , 𝑉 , 𝜇𝑖) and is given by:

 = 𝐸 − 𝑇𝑆 −∑
𝑖
𝜇𝑖𝑁𝑖 (1.20)
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We use  in the case of an isothermal process and fixed chemical potential, along with mechanical
isolation.  also has:

𝑃 = −(
𝜕
𝜕𝑉 ) , 𝑆 = −(

𝜕
𝜕𝑇 ) , 𝑁𝑖 = −(

𝜕
𝜕𝜇𝑖)

(1.21)

– We can also see that applying 1.13 to the grand canonical potential leads to:

 = −𝑃𝑉 (1.22)

1.24.4 Enthalpy

– This is (𝑆, 𝑃 , 𝑁𝑖) and is given by:

 = 𝐸 + 𝑃𝑉 (1.23)

We use  in the case of an Isobaric process along with thermal and chemical isolation.  also has:

𝑃 = (
𝜕𝐻
𝜕𝑉 ) , 𝑆 = (

𝜕𝐻
𝜕𝑇 ) , 𝜇𝑖 = (

𝜕𝐻
𝜕𝑁𝑖)

(1.24)

1.25 Maxwell’s relations

• In examining the different potentials above, one can use the fact that they are exact to derive extra partial
derivative relations between the parameters. These relations come from the fact that it does not matter
which order you take the derivatives. i.e. 𝜕2𝐸

𝜕𝑉𝜕𝑆 = 𝜕2𝐸
𝜕𝑆𝜕𝑉 . The relations discovered are:

(
𝜕𝑇
𝜕𝑉 )𝑆

= −(
𝜕𝑃
𝜕𝑆 )𝑉

, (
𝜕𝑇
𝜕𝑃 )𝑆

= (
𝜕𝑉
𝜕𝑆 )𝑃

(
𝜕𝑉
𝜕𝑇 )𝑃

= −(
𝜕𝑆
𝜕𝑃 )𝑇

, (
𝜕𝑃
𝜕𝑇 )𝑉

= (
𝜕𝑆
𝜕𝑉 )𝑇

(1.25)

• However it should be noted that if one comes to a problem where you can write down one of the thermo-
dynamic potentials and solve the problem, then you will not need to use any of the Maxwell’s relations
through out that problem, provided the correct potential is chosen.
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1.26 Concavity/Convexity

• A function 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) with a parameter 𝑡 ∈ [0, 1], is concave iff:

𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑦1, ..., 𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛) ≥ 𝑡𝑓 (𝑥1, ..., 𝑥𝑛) + (1 − 𝑡)𝑓 (𝑦1, ..., 𝑦𝑛) (1.26)

• 𝑓 is instead convex iff:

𝑓 (𝑡𝑥1 + (1 − 𝑡)𝑦1, ..., 𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛) ≤ 𝑡𝑓 (𝑥1, ..., 𝑥𝑛) + (1 − 𝑡)𝑓 (𝑦1, ..., 𝑦𝑛) (1.27)

Concavity means all tangent lines are above the graph of the function, where as convexity means all tangent
lines are below the graph of the function.

• For fixed 𝑁 the thermodynamic potentials defined by the Legendre transform of 𝐸(𝑆, 𝑉 , 𝑁𝑖) and 𝑆(𝐸, 𝑉 , 𝑁𝑖)
are convex functions of there extensive variables and concave functions of their intensive variables.

1.27 Hessian matrix

• For functions 𝑓 ∶ ℝ𝑛 → ℝ of many variables which are at least twice differentiable the hessian matrix is
defined as:

𝐻 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕2𝑓
𝜕𝑥21

⋅ ⋅ ⋅ 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝜕2𝑓
𝜕𝑥𝑚𝜕𝑥1 ⋅ ⋅ ⋅ 𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.28)

Then if the hessian matrix evaluated at a point 𝐻(𝑥01 , 𝑥02 , ..., 𝑥0𝑛), is positive definite then it has positive
eigenvalues and thus there is a local minimum at x0. Likewise if 𝐻(𝑥01 , 𝑥02 , ..., 𝑥0𝑛) is negative definite there
is a max at x0. If there are both positive and negative eigenvalues then x0 is a saddle point otherwise if
𝑑𝑒𝑡(𝐻) = 0, then the test is inconclusive.

• For functions 𝑓 (𝑥1, 𝑥2), twice differentiable, 𝑓 is concave iff:

𝜕2𝑓
𝜕𝑥2𝑖

≤ 0, 𝑖 = 1, 2, and
𝜕2𝑓
𝜕𝑥21

𝜕2𝑓
𝜕𝑥22

−
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
≥ 0 (1.29)

And 𝑓 is convex iff:

𝜕2𝑓
𝜕𝑥2𝑖

≥ 0, 𝑖 = 1, 2, and
𝜕2𝑓
𝜕𝑥21

𝜕2𝑓
𝜕𝑥22

−
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
≥ 0 (1.30)
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1.28 Physical properties

• These are measurable properties of materials defined through the thermodynamic variables.

1.28.1 Heat Capacities

– There is the heat capacity at constant volume 𝐶𝑉 :

𝐶𝑉 ≡ (
𝑑𝑄
𝑑𝑇 )𝑉

= (
𝜕𝐸
𝜕𝑇 )𝑉 ,𝑁

(1.31)

– And the heat capacity at constant pressure 𝐶𝑃 :

𝐶𝑃 ≡ (
𝑑𝑄
𝑑𝑇 )𝑃

= (
𝜕𝐸
𝜕𝑇 )𝑃,𝑁

+ 𝑃 (
𝜕𝑉
𝜕𝑇 )𝑃,𝑁

= (
𝜕𝐻
𝜕𝑇 )𝑃,𝑁

(1.32)

1.28.2 Coefficient of thermal expansion

– This is 𝛼 defined as:

𝛼 ≡
1
𝑉 (

𝜕𝑉
𝜕𝑇 )𝑃,𝑁

(1.33)

1.28.3 Coefficient of isothermal/isentropic compressability

– The coefficient of isothermal compressability is given by:

𝜅𝑇 ≡ −
1
𝑉 (

𝜕𝑉
𝜕𝑃 )𝑇 ,𝑁

(1.34)

– And the coefficient of isentropic (though really here we mean adiabatic plus reversible but we assume
everything is quasistatic so we can just say isentropic) compressability is:

𝜅𝑠 ≡ −
1
𝑉 (

𝜕𝑉
𝜕𝑃 )𝑆,𝑁

(1.35)
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• From these definitions the following properties can be shown:

𝐶𝑃 − 𝐶𝑉 = 𝑇𝑉
𝛼2

𝜅𝑇
𝐶𝑃

𝐶𝑉
=

𝜅𝑇
𝜅𝑆

𝐶𝑉 = 𝑇𝑉
𝛼2𝜅𝑆

𝜅𝑇 (𝜅𝑇 − 𝜅𝑆)
, 𝐶𝑃 = 𝑇𝑉

𝛼
𝜅𝑇 − 𝜅𝑆

(1.36)

1.29 Consequences of stability

• Due to convexity 𝜕2𝑆
𝜕𝐸2 < 0, but 𝜕𝑆

𝜕𝐸 = 1
𝑇 , This implies that:

1
𝑇 2 (

𝜕𝑇
𝜕𝐸)

= −
1

𝑇 2𝐶𝑉
< 0

⟹ 𝐶𝑉 > 0
(1.37)

Then we can use relations 1.36 to get that 𝐶𝑃 > 𝐶𝑉 > 0.

Similarly, 𝜕2𝐹
𝜕𝑉 2 > 0 implies that:

𝜅𝑆 > 0 (1.38)

And then once again by relations 1.36, 𝜅𝑇 > 𝜅𝑆 > 0.

1.30 Phase transitions

• A phase is a state ofmatter with uniform properties such that at thermodynamic equilibrium a characteristic
state equation for the state exists.

We will consider phase transitions as the failure of equilibrium/stability conditions .

There are two large classes of phase transitions.

1.31 First order phase transitions

• Also known as discontinuous, here the different phases are at different regions in the thermodynamic
configuration space. In these transitions the derivative of the thermodynamic potential describing the
system is not continuous.

1.32 Second order phase transition

• Also known as continuous phase transition, here the two phases are continuous in the thermodynamic
equilibrium space.
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1.33 Clausius-Clapeyron equation

• At a first order transition the Gibbs free energy at the point of transition is  = (1) + (2), where (1) and
(2), are the Gibbs free energy of phase 1 and 2, respectively. Then we have that

(
𝜕𝐺
𝜕𝑇 )

= −𝑆(1) ≠ 𝑆(2)

(
𝜕𝐺
𝜕𝑃 )

= −𝑉(1) ≠ 𝑉(2)
(1.39)

For a first order phase transition the pressure remains the same while the volume increases from 𝑉 → 𝑉 ′

because the two phases have different densities.

At the boundary where phases coexist, so 𝑑 = 0𝑡𝑜𝑡 , this is due to the fact that  wants to be at a minima
at equilibrium for the conditions of constant pressure and temperature. So if 𝑇 and 𝑉 are fixed as we cross
the phase boundary then we get that:

𝑑𝑡𝑜𝑡 = 0 = 𝜇1𝑑𝑁1 + 𝜇2𝑑𝑁2 (1.40)

But since we are dealing with an isolated system 𝑑𝑁1 = −𝑑𝑁2. Here 𝑁𝑖 is the number of particles in phase
𝑖. These two equations tell us that 𝜇1 = 𝜇2. Also here we can use the Gibbs Duhem relation 1.15, to use the
fact that 𝜇1 = 𝜇2 to write down:

−
𝑆1
𝑁1

𝑑𝑇 +
𝑉1
𝑁1

𝑑𝑃 = −
𝑆2
𝑁2

𝑑𝑇 +
𝑉2
𝑁2

𝑑𝑃

⟹ 𝑑𝑃(
𝑉1
𝑁1

−
𝑉2
𝑁2

) = 𝑑𝑇 (
𝑆1
𝑁1

−
𝑆2
𝑁2

)

⟹
𝑑𝑃
𝑑𝑇

||||𝑎𝑐𝑟𝑜𝑠𝑠 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
=

Δ𝑠
Δ𝑣

(1.41)

Where the final term is in terms of specific volume 𝑣 and entropy 𝑠. If we then define the latent heat per
particle as 𝑙 ≡ 𝑇Δ𝑆, which we can consider constant as this phase change we are discussing is at constant
temperature. Thus the Clausius–Clapeyron equation is:

𝑑𝑃
𝑑𝑇

=
𝑙

𝑇Δ𝑣
(1.42)

This latent heat is always specified with a name that tells you which phase transition it is from and to, eg.
the latent heat of vaporisation,sublimation, etc... There is no latent heat in second order phase transitions.
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1.34 Gibbs phase rule

• This gives us an expression for the number of thermodynamic degrees of freedom, If a system can exist
in 𝑀 possible phases and has 𝑟 constituents, this means we have 2 + 𝑀(𝑟 − 1) independent variables. The
2 comes from temperature and pressure and the 𝑀(𝑟 − 1) comes from the 𝑟 constituents, which have a
Gibbs-Duhem relationship for each phase. Then if the phases of each constituent are in equilibrium with
each other we must have that ∀ 𝑖 = 1, 2, ..., 𝑟 , 𝜇(1)𝑖 = 𝜇(2)𝑖 = ... = 𝜇(𝑀)

𝑖 . Thus there are an extra 𝑟(𝑀 − 1)
equations. Thus the total number of degrees of freedom are 𝑓 = 2 + 𝑀(𝑟 − 1) − 𝑟(𝑀 − 1), thus:

𝑓 = 𝑟 + 2 − 𝑀 (1.43)

1.35 Critical point of transition

• If we have a region in the phase space where 𝜕𝑃
𝜕𝑉 > 0, the this implies that 𝜅𝑇 < 0, which is a violation of

stability. So phase transition must take place at the point where this begins to happen and where there is
a point of inflection so that convex shape of the graph also changes to concave at this point too. So:

𝜕𝑃
𝜕𝑉

=
𝜕2𝑃
𝜕𝑉 2 = 0 (1.44)

This idea I think is best motivated from the below figure taken from Concepts in thermal physics by Blundell and
Blundell.
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Figure 1: Isotherms of the van der Waals gas. Isotherms towards to the top right of the graph correspond to higher temperatures.
The dashed line shows the region in which liquid and vapour are in equilibrium. The thick line is the critical isotherm and the
dot marks the critical point.
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2 Mathematics of Statistical mechanics

2.1 Gamma function

• The Gamma function is the generalisation of the factorial function to non integers (Γ(𝑛 + 1) = 𝑛! if 𝑛 is an
integer). It is expressed in the form of an integral and many problems reduce to turning an integral into
the gamma function. It is defined as follows:

Γ(𝑧) = ∫
∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 (2.1)

Also has the usefull property that Γ(𝑧 + 1) = 𝑧Γ(𝑧).

2.2 Many variable Gaussian integral

• The Gaussian integral is well known, ∫ ∞
−∞ 𝑒−𝑥2𝑑𝑥 =

√
𝜋. This can then be generalised to have any sort of

multi-variable quadratic powers. If we have have 𝑛 variables, 𝑥1, 𝑥2, ..., 𝑥𝑛, then any quadratic combination
of these can be written as:

𝑎11𝑥21 + 𝑎12𝑥1𝑥2 + ... =
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝐴𝑖𝑗𝑥𝑗 = x𝑇𝐴x (2.2)

Where here we have introduced the symmetric matrix 𝐴𝑇 = 𝐴 to account for the coefficients 𝑎𝑖𝑗 . We can
use this generalisation via the means of eigenvalues to prove the following integral:

∫
∞

−∞
𝑑𝑥1𝑑𝑥2...𝑑𝑥𝑛𝑒−

1
2x

𝑇𝐴x =
(2𝜋)

𝑛
2

√
𝑑𝑒𝑡(𝐴)

(2.3)

• And if we add any linear term:

∫
∞

−∞
𝑑𝑥1𝑑𝑥2...𝑑𝑥𝑛𝑒−

1
2x

𝑇𝐴x+𝐵𝑇 x =
(2𝜋)

𝑛
2

√
𝑑𝑒𝑡(𝐴)

𝑒
1
2𝐵

𝑇𝐴−1𝐵 (2.4)

- 18 -



Statistical Physics I 2 Mathematics of Statistical mechanics

2.3 Beta Function

• Has an integral definition that can be manipulated to be expressed in terms of gamma functions:

𝐵(𝑚, 𝑛) = ∫
1

0
𝑥𝑚−1(1 − 𝑥𝑛−1)𝑑𝑥 =

Γ(𝑚)Γ(𝑛)
Γ(𝑚 + 𝑛)

(2.5)

2.4 Sterling’s approximation

• This approximation is said to only work for large 𝑁 , but has an error of less than 1% for 𝑁 > 100 so its
pretty good, this comes from Hyper physics. See also the graph below as visual proof. The approximation
is as follows:

ln(𝑁 !) =
𝑁
∑
𝑘=1

𝑙𝑛(𝑘) ≈ ∫
𝑁

1
𝑙𝑛(𝑘)𝑑𝑘 = 𝑁 ln(𝑁 ) − 𝑁 (2.6)

This can be extended to the gamma function:

ln(Γ(𝑁 + 1)) ≈ 𝑁 ln(𝑁 ) − 𝑁 (2.7)

• This approximation is could be slightly better if instead ln(𝑁 !) ≈ 𝑁 ln(𝑁 ) − 𝑁 + 1
2 ln(2𝜋𝑁). Both of these

are shown below.

Figure 2: Sterling approximation vs Γ(𝑥 − 1)

Figure 3: Slightly better Sterling approximation vs Γ(𝑥 −
1)
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2.5 Area of a Hyper-sphere

• We denote 𝑆𝑛−1(𝑅) as the 𝑛 − 1 sphere of radius 𝑅, That is the following set of points:

𝑆𝑛−1(𝑅) =

{

𝑥 ∈ ℝ𝑛|
𝑛
∑
𝑖=1

𝑥2𝑖 = 𝑅2

}

(2.8)

Then we denote 𝑆𝑛−1(𝑅) the area of this sphere. The formula for this can be motivated by considering how
one would extend spherical co-ordinates to higher dimensions. For 𝑛−1 dimensions the co-ordinates would
extend as follows

Cartesian Spherical
𝑥1 𝑟 cos 𝜙1
𝑥2 𝑟 sin 𝜙1 cos 𝜙2
𝑥3 𝑟 sin 𝜙1 sin 𝜙2 cos 𝜙3
. .
. .
. .

𝑥𝑛−2 𝑟 sin 𝜙1 sin 𝜙2... sin 𝜙𝑛−2 cos 𝜙𝑛−1
𝑥𝑛−1 𝑟 sin 𝜙1 sin 𝜙2... sin 𝜙𝑛−2 sin 𝜙𝑛−1

Table 1: Extension of spherical co-ords to 𝑛 − 1 dimensions

Where here 𝜙1, 𝜙2, ..., 𝜙𝑛−1 ∈ [0, 𝜋] and 𝜙𝑛−1 ∈ [0, 2𝜋]. One can then see that the Jacobian, i.e. the determi-
nant of the Jacobian matrix when changing from 𝑛 − 1 Cartesian co-ords to 𝑛 − 1 spherical is as follows:

𝐽 = 𝑟𝑛−1 sin𝑛−2 𝜙1 sin𝑛−3 𝜙2... sin 𝜙𝑛−2
⟹ 𝑑𝑥1𝑑𝑥2...𝑑𝑥𝑛−1 = 𝑟𝑛−1𝑑Ω𝑛−1𝑑𝑟 = 𝑟𝑛−1𝑑𝑆𝑛−1(1)𝑑𝑟

(2.9)

The last step here is given as the definition of Ω𝑛 is Ω𝑛 = 𝑆𝑛−1/𝑟𝑛−1 ⟹ 𝑑Ω𝑛−1 = 𝑑𝑆𝑛−1(1). Finally to find
the area, we consider the following integral two which we know the result:

𝐼𝑛 = ∫
∞

−∞

𝑛
∏
𝑖=1

𝑑𝑥𝑖𝑒−𝑥
2
𝑖 = 𝜋

𝑛
2 (2.10)

And converting to spherical co-ords:

𝐼𝑛 = ∫
∞

0
𝑟𝑛−1𝑑𝑆𝑛−1(1)𝑑𝑟𝑒−𝑟

2
, 𝑢 = 𝑟2

⟹ 𝐼𝑛 =
1
2
𝑆𝑛−1(1) ∫

∞

0
𝑢

𝑛
2−1𝑒−𝑢𝑑𝑢 =

1
2
Γ(
𝑛
2
)𝑆𝑛−1(1)

(2.11)
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Re-arranging:

𝑆𝑛−1(1) =
2𝜋

𝑛
2

Γ( 𝑛2 )

⟹ 𝑆𝑛−1(𝑅) =
2𝜋

𝑛
2

Γ( 𝑛2 )
𝑅𝑛−1

(2.12)

Where the last jump is from dimensional analysis.

2.6 Volume of an n-ball

• An 𝑛-ball is denoted 𝑉 𝑛(𝑅) and the volume of this ball 𝑉𝑛(𝑅). The value of this can be found from consid-
ering:

𝑉𝑛(𝑅) = ∫
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑛
∏
𝑖=1

𝑑𝑥𝑖 = ∫
𝑅

0
𝑟𝑛−1𝑑𝑟 ∫ 𝑑𝑆𝑛−1

⟹ 𝑉𝑛(𝑅) =
2𝜋

𝑛
2

𝑛Γ( 𝑛2 )
𝑅𝑛

(2.13)
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3 Probability and statistics

3.1 Sample space

• Space of all possible outcomes of an experiment or observed random phenomena.

3.2 Probability

• If we perform the experiment 𝑁 times and obtain 𝑛 positive results, then the probability of a positive result
is:

𝑃𝑟 = lim
𝑁→∞

𝑛
𝑁 (3.1)

3.3 Random variable

• A function which takes real values and is defined on the sample space.

3.4 Probability distribution

• Describes the relationship between the random variables and the probabilities that the random variable 𝑋
will obtain a certain value.

3.5 Discrete variables

• If the possible values of a random variable are discrete, i.e. 𝑋 ∈ {𝑥1, 𝑥2, ..., 𝑥𝑛}, then:

𝑃𝑟[𝑋 = 𝑥𝑖] = 𝑃𝑖,
𝑛
∑
𝑖=1

𝑃𝑖 = 1 (3.2)

3.6 Continuous variables

• If the random variable takes on continuous values, i.e. 𝑋 ∈ [𝑎, 𝑏] ∈ ℝ, then:

𝑃𝑟[𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥] = 𝜌(𝑥)𝑑𝑥, ∫
𝑏

𝑎
𝜌(𝑥)𝑑𝑥 = 1 (3.3)

Here 𝜌(𝑥) is a probability distribution/density.
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3.7 Mean and variance

• The mean 𝜇 is the same as the expectation value of the random variable ⟨𝑋⟩. This takes the following form
for the discrete case:

𝜇 = ⟨𝑋⟩ ≡
𝑛
∑
𝑖=1

𝑃𝑖𝑥𝑖 (3.4)

And in the continuous case:

𝜇 = ⟨𝑋⟩ ≡ ∫
𝑏

𝑎
𝜌(𝑥)𝑥𝑑𝑥 (3.5)

Providing both of these are convergent.

• In both cases the variance is defined as 𝜎2 ≡ ⟨𝑋 2⟩ − ⟨𝑋⟩2.

3.8 Common distributions

3.8.1 Binomial distribution

• Here there are two outcomes 𝐵 and 𝑊 with probabilities 𝑝 and 𝑞 = 1 − 𝑝. Suppose in 𝑁 trials we observe
𝑛 times 𝐵 and 𝑁 − 𝑛 times 𝑊 . To compute the probability in 𝑁 independent trials to observe 𝑛 positive
results is:

𝑃𝑟(𝑁 , 𝑛, 𝑝) = (
𝑁
𝑛)

𝑝𝑛(1 − 𝑝)𝑁−𝑛, (
𝑁
𝑛)

=
𝑁!

𝑛!(𝑁 − 𝑛)!
(3.6)

This prefactor can be motivated from the following. The number of ways to arrange 𝑛 distinct objects in
𝑁 distinct boxes, with 𝑁 > 𝑛, is 𝑁(𝑁 − 1)...(𝑁 − 𝑛 + 1) = 𝑁!

(𝑀−𝑛)! . This just comes from the fact that there
are 𝑁 boxes to put the first object in, 𝑁 − 1 to put the second in... repeated until there are no more objects
left to place. Then seeing as all the 𝑛 objects are identical we have to divide by 𝑛! to avoid over counting.
leaving us with the above prefactor.

• For this distribution 𝜇 = 𝑁𝑝 and 𝜎 = 𝑁𝑝(1 − 𝑝).

3.8.2 Multinomial distribution

• Generalisation of binomial, for when there are 𝑘 possible outcomes, with 𝑘 > 2 and so 𝑃𝑖, 𝑖 = 1, 2, ..., 𝑘. Then
we we can write:

𝑃𝑟[𝑋1 = 𝑛1, 𝑋2 = 𝑛2, ..., 𝑋𝑘 = 𝑛𝑘 , ] =
𝑁 !

𝑛1!𝑛2!...𝑛𝑘!
𝑃𝑛1
1 𝑃𝑛2

2 ...𝑃𝑛𝑘
𝑘 (3.7)

Where the total number of trials is∑𝑘
𝑖=1 𝑛𝑖 = 𝑁 . As well as∑𝑘

𝑖=1 𝑃𝑖 = 1.
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3.8.3 Poisson distribution

• This distribution that gives us the probability of 𝑘 events to occur in a fixed time or space interval given
that we know that these events occur at a constant rate 𝑟 in a fixed time interval 𝑡:

𝑃𝑟[𝑋 = 𝑘] = 𝑒−𝑟𝑡
(𝑟𝑡)𝑘

𝑘!
(3.8)

Or if we know that the average number of events in this given interval is 𝜆:

𝑃𝑟[𝑋 = 𝑘] = 𝑒−𝜆
𝜆𝑘

𝑘!
(3.9)

• For this distribution both 𝜇 = 𝜎 = 𝜆.

3.8.4 Gaussian distribution

• Is the most common important continuous distribution. Applies to most random phenomena with given
average 𝜇 and standard deviation 𝜎. The distribution takes the form:

𝜌(𝑥) =
1√
2𝜋𝜎

𝑒−
(𝑥−𝜇)2

2𝜎2 (3.10)

3.9 Central limit theorem

• Suppose that 𝑋𝑖, 𝑖 = 1, 2, ..., 𝑁 are random independent variables with the same probability distribution
𝜌(𝑥). If we define a new random variable 𝑌 = 𝑋1 +𝑋2 + ... +𝑋𝑁 , then in the limit as 𝑁 → ∞ (In practise we
have 𝑁 >> 1). Then the probability distribution 𝑃𝑟[𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦] = 𝜌(𝑦)𝑑𝑦, is a Gaussian distribution.
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4 Statistical mechanics

• Thermodynamic Laws are an essential consequence of statistics and fundamental laws of nature (here
mechanics) i.e. fundamental physics governing the behaviour of the constituents of the system.

4.1 Macro and microscopic description

• The goal of statistical mechanics is to relate thermodynamic quantities 𝐸, 𝑉 and 𝑁 with the set {𝑝𝑖, 𝑞𝑖}, 𝑖 =
1, 2, ..., 3𝑁 . The set {𝑝𝑖, 𝑞𝑖} defines the microstate of the system, where as 𝐸, 𝑉 , 𝑁 characterise the macrostate.

• Each particle in a system has energy 𝐸𝑘 = 𝐸𝑘(𝑥𝑖, 𝑝𝑖), this implies the total energy 𝐸 is:

𝐸 = ∑
𝑘
𝑛𝑘𝐸𝑘 (4.1)

Where 𝑛𝑘 is the occupation number, i.e. the number of constituents with a given energy 𝐸𝑘 . In general
many micro states will ”realise” a given macrostate. Here ”realise” is the word Manuela uses, as an alternate
definition of realise is ”cause to happen”.

4.2 Ensemble

• Is a collection of a very large number of identical systems differing only in initial conditions, expected to
realise all the possible micro-states of a given macrostate.

4.3 Phase space

• The appropriate formalism for classical systems requires considering the phase space. The phase space is
defined by the aforementioned mentioned set {𝑝𝑖, 𝑞𝑖}, which has dimensionality 6𝑁 , (𝑞𝑖, 𝑝𝑖) defines a point
in the phase space. The Energy is determined by the Hamiltonian of the system(𝑞𝑖, 𝑝𝑖). The Hamiltonian
has the property:

𝑞̇𝑖 =
𝜕
𝜕𝑝𝑖

, 𝑝̇𝑖 = −
𝜕
𝜕𝑞𝑖

, 𝑖 = 1, 2, ..., 3𝑁 (4.2)

For isolated systems we have that:

𝑑
𝑑𝑡

=
𝜕
𝜕𝑡

= 0 ⟹  = 𝐸 = preserved (4.3)

• The possible micro-states realising a given macrostate belong to a subspace of the total phase space which
satisfy (𝑞𝑖, 𝑝𝑖) = 𝐸. The dimensionality of this subspace is 6𝑁 − 1, always one less then the full phase
space dimension.
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Any easy example of this is the harmonic oscillator. In 1-D we know the particle traces out an ellipse in the
phase space, with the size of the ellipse being related to the energy of the particle. Here the particles path
is in a 1-D subspace (the ellipse) of the 2-D plane of the phase space.

In practise 𝐸 being a continuous variable, makes sense to ask or expect that 𝐸 − 1
2Δ𝐸 ≤  ≤ 𝐸 + 1

2Δ𝐸 or
equivalently:

𝐸 ≤  ≤ 𝐸 + Δ𝐸,
Δ𝐸
𝐸

<< 1 (4.4)

In this case the space available to the system is not a hypersurface, but the volume of a thin shell included
between the hypersurfaces defined by 𝐸 and 𝐸 + Δ𝐸.

4.4 Number of microstates

• The number of microstates ({𝑞𝑖, 𝑝𝑖}) realising an energy 𝐸 is denoted Ω. In general we would expect that the
infinitesimal of this quantity is related to the infinitesimal of the phase space volume, i.e. 𝛿Ω ∼ 𝛿𝑉 . This
is just saying that if there are more possible values for the position and momentum then there should be
more possible configurations with the same energy. More precisely we write:

𝛿Ω = 𝜌(𝑞̄, 𝑝̄, 𝑡)𝛿𝑞̄𝛿𝑝̄ (4.5)

Here 𝑞̄ and 𝑝̄ represent all the momenta and all the positions, this means: 𝑞̄ = {𝑞𝑖} and 𝑝̄ = {𝑝𝑖}. The quantity
𝜌(𝑞̄, 𝑝̄, 𝑡) is the density of microstates. We can consider this as the number of microstates divided by the
phase space volume.

The quantity 𝛿𝑞̄𝛿𝑝̄ is the phase space available to a given microstate. This can be written as:

𝛿𝑞̄𝛿𝑝̄ =
𝑑𝑞̄𝑑𝑝̄
𝛾0

(4.6)

Here 𝛾0 is the volume associated to a single microstate, to be related to Heisenberg’s uncertainty principle.
𝑑𝑞 and 𝑑𝑝 are the regular differentials for momentum and position defined as:

𝑑𝑞̄ =
3𝑁
∏
𝑖=1

𝑑𝑞𝑖, 𝑑𝑝̄ =
3𝑁
∏
𝑖=1

𝑑𝑝𝑖 (4.7)

In general classical physics is valid so long as 𝑑𝑞̄𝑑𝑝̄
𝛾0 >> 1 ⟹ 𝛿Ω >> 1. Now we can then integrate the

- 26 -



Statistical Physics I 4 Statistical mechanics

above expression for 𝛿Ω , equation 4.5:

Ω(𝐸 ≤  ≤ 𝐸 + Δ𝐸, 𝑉 , 𝑁 ) = ∫
𝑑𝑞̄𝑑𝑝̄
𝛾0

𝜌(𝑞̄, 𝑝̄, 𝑡)

⟹ Ω(𝐸, 𝑉 , 𝑁 ) = ∫
Γ

𝑑𝑞̄𝑑𝑝̄
𝛾0

𝜌(𝑞̄, 𝑝̄, 𝑡)
(4.8)

Where Γ = phase space constraints. Equivalent to saying integrating over all the available phase space.

4.5 Probability distribution

• The probability distribution 𝑃𝑟 is defined as:

𝑃𝑟(𝑞̄, 𝑝̄, 𝑡) ≡
𝜌(𝑞̄, 𝑝̄, 𝑡)

Ω
=

number of microstates in 𝛿𝑉
total number of microstates

(4.9)

Then the average of any physical quantity 𝑓 (𝑞̄, 𝑝̄) can be found from:

⟨𝑓 ⟩ = ∫
Γ

𝑑𝑞̄𝑑𝑝̄
𝛾0

𝑓 (𝑞̄, 𝑝̄)𝑃𝑟(𝑞̄, 𝑝̄, 𝑡) (4.10)

Where Γ is once again the phase space available to the system.

4.5.1 Liouville’s theorem

• Tells us that the distribution function (for us 𝑃𝑟(𝑞̄, 𝑝̄, 𝑡)) is constant along any trajectory in phase space.
Mathematically this means:

𝑑𝑃𝑟
𝑑𝑡

= 0 (4.11)

This can be restated in terms of the Poisson bracket, which for two functions 𝑓 (𝑝𝑖, 𝑞𝑖, 𝑡) and 𝑔(𝑝𝑖, 𝑞𝑖, 𝑡), is
defined as:

{𝑓 , 𝑔} =
𝑁
∑
𝑖 (

𝜕𝑓
𝜕𝑞𝑖

𝜕𝑔
𝜕𝑝𝑖

−
𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑞𝑖)

(4.12)
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the Poisson bracket also has that for 𝑓 (𝑝𝑖, 𝑞𝑖, 𝑡):

𝑑𝑓
𝑑𝑡

= {𝑓 , 𝐻} +
𝜕𝑓
𝜕𝑡

(4.13)

So we can re-write 4.11 as:

𝜕𝑃𝑟
𝜕𝑡

= −{𝑃𝑟, 𝐻} (4.14)

4.5.2 Conservative system probability distribution

• For conservative systems we have that 𝜕𝑃𝑟
𝜕𝑡 = 0. So using the above equation 4.14 this can be written as

0 =
𝑁
∑
𝑖 (

𝜕𝑃𝑟
𝜕𝑓

𝜕𝑓
𝜕𝑞𝑖

𝜕𝐻
𝜕𝑝𝑖

−
𝜕𝑃𝑟
𝜕𝑓

𝜕𝑓
𝜕𝑝𝑖

𝜕𝐻
𝜕𝑞𝑖 )

=
𝜕𝑃𝑟
𝜕𝑓

{𝑓 , 𝐻}

⟹ {𝑓 , 𝐻} = 0

(4.15)

Where the last step is due to 𝑓 being arbitrary and we want 𝑃𝑟(𝑓 ) so 𝜕𝑃𝑟
𝜕𝑓 ≠ 0. This allows us to write

𝑃𝑟 = 𝑃𝑟(𝑓 (𝑞̄, 𝑝̄)). So no time dependence as long as {𝑓 , 𝐻} = 0.

• We can choose the simplest form for 𝑓 (𝑞̄, 𝑝̄), 𝑓 = 𝐻 . This means that for isolated systems:

𝑃𝑟() =

{
constant, 𝐸 ≤  ≤ 𝐸 + Δ𝐸
0, otherwise

(4.16)

This is the case as for isolated systems  is a constant and we also know 𝑃𝑟 must vanish when not very
near the value of the energy of the system 𝐸.

4.6 Microcanonical ensemble

• Ensemble (large number) of isolated identical systems (in terms of structure & Hamilton dynamics) which
differ in initial conditions. All possible microstates are then expected to be observed within the ensemble
(all microstates which realise a given energy).

• The average of a quantity over a microcanonical ensemble is the same as a time average of that quantity
over one ensemble.

⟨𝑓 ⟩𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ⟨𝑓 ⟩𝑡𝑖𝑚𝑒 (4.17)

A system satisfying this is known to be ergodic.
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4.7 Density of microstates

• We know that the probability over the phase space available to the system Γ must be 1 so:

∫
Γ
𝑃𝑟

𝑑𝑞̄𝑑𝑝̄
𝛾0

= 1

⟹ 𝑃𝑟 =
1
Γ

(4.18)

We also assume that all states have equal probabilities, so the probability distribution 𝑃𝑟 can also be written
as:

𝑃𝑟 =
1
Ω

⟹ 𝜌(𝑞̄, 𝑝̄) = 1 (4.19)

This result makes sense as we would expect the number of microstates to be contingent on how we can
change the positions of particles in the phase space and it wouldn’t make any sense if the density of mi-
crostates was any different to the density of phase space points. This all means we can write Ω as:

Ω = ∫
Γ

𝑑𝑞̄𝑑𝑝̄
𝛾0

= Γ (4.20)

• We are interested in the number of microstates with energies 𝐸 ≤  ≤ 𝐸 + Δ𝐸. For this we introduce a
new quantity 𝑊(𝐸, 𝑉 , 𝑁 ), the density of microstates of given {𝐸, 𝑉 , 𝑁 }, such that:

𝛿Ω = 𝑊𝛿𝐸 (4.21)

This can be expressed as:

𝛿Ω = ∫
(𝛿𝐸)

𝑑𝑞̄𝑑𝑝̄
𝛾0

= ∫
𝐻≤𝐸+𝛿𝐸

𝑑𝑞̄𝑑𝑝̄
𝛾0

− ∫
𝐻≤𝐸

𝑑𝑞̄𝑑𝑝̄
𝛾0

(4.22)

So in the limit as 𝛿𝐸 → ∞

𝑊(𝐸, 𝑉 , 𝑁 ) =
𝜕
𝜕𝐸 ∫

𝐻≤𝐸

𝑑𝑞̄𝑑𝑝̄
𝛾0

=
𝜕Φ
𝜕𝐸

(4.23)

Φ here is known as the cumulative probability.

- 29 -



Statistical Physics I 4 Statistical mechanics

4.8 Approximations for calculations

• Since we are usually dealing with surfaces and volumes with dimensions linear in 𝑁 , the dimensions are
naturally very large thus there is not much difference between 𝑁 and 𝑁 − 1. This means we end up saying
Ω = 𝑊Δ𝐸, where Δ𝐸 is the size of the region the Hamiltonian must reside in, 𝐸 ≤ 𝐇 ≤ 𝐸 + Δ𝐸. This then
means that Ω and 𝑊 coincide , to linear order in Δ𝐸

𝐸 (which is small).

4.9 Identical particle systems

• Since microstates are the number of ways of re-arranging the system and getting the same overall energy,
if we have a system of identical particles, we must divide the number of microstates Ω by 𝑁! in order to
avoid over counting. This is to account for the number of ways we can swap any number of particles since
they are identical and still have the same overall energy.

4.10 Ideal Gas

• For an ideal gas it is assumed that all the particles are identical with mass 𝑚 and non-interacting, so for 𝑁
particles enclosed in a volume 𝑉 in 3D space the Hamiltonian takes the form  = ∑3𝑁

𝑖
𝑝2𝑖
2𝑚 . We can then

use this Hamiltonian to evaluate Φ:

Φ =
1
𝑁 ! ∫∑3𝑁

𝑖
𝑝2𝑖
2𝑚≤𝐸

3𝑁
∏
𝑖=1

𝑑𝑝𝑖𝑑𝑞𝑖
𝛼0

(4.24)

Where here 𝛼0 is just the volume associated to a single microstate for the phase space of a single particle.
Seeing as each particle is identical 𝛼3𝑁0 = 𝛾0. Seeing as the Hamiltonian only depends on the momenta
𝑝𝑖 and not the positions 𝑞𝑖, the position half of the integral can be separated and evaluated. It amounts to
integrating (or just simply adding) up all possible positions, which is just the volume 𝑉 of the system. This
is something we have seen before it is just saying:

∫
𝑉

3𝑁
∏
𝑖=1

𝑑𝑞𝑖 = 𝑉 𝑁 (4.25)

The integral is now:

Φ =
𝑉 𝑁

𝛼3𝑁0 𝑁! ∫∑3𝑁
𝑖 𝑝2𝑖 ≤2𝑚𝐸

3𝑁
∏
𝑖=1

𝑑𝑝𝑖 (4.26)

This integral can then be recognised as the volume of a hyper ball of radius
√
2𝑚𝐸 in 3𝑁 dimensions which

via 2.13 means:

Φ =
𝑉 𝑁

𝛼3𝑁0 𝑁!
(2𝑚𝜋𝐸)

3𝑁
2

Γ( 3𝑁2 + 1)
(4.27)
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So the density of microstates 𝑊 is:

𝑊0(𝐸, 𝑉 , 𝑁 ) =
𝑉 𝑁

𝛼3𝑁0 𝑁!
(2𝑚𝜋)

3𝑁
2

Γ( 3𝑁2 )
𝐸

3𝑁
2 −1 (4.28)

Where we have used the fact that 3𝑁
2 Γ( 3𝑁2 − 1) = Γ( 3𝑁2 ).

4.11 Finding volume associated to a single microstate

• To do this we have to delve into a little quantum mechanics. Here we analyze the simplest system, free
particles confined to a cube of length 𝑙 and volume 𝑉 = 𝑙3. By looking at the Schrödinger equation it can
be shown that the energy of a single particle is:

𝜖 =
ℎ2

2𝑚𝑉 2/3

3
∑
𝑖=1

𝑛2𝑖 , 𝑛 = ±1, ±2, ±3, ... (4.29)

The number of microstates is then related to the number of combinations of {𝑛𝑖}, such that:

𝐸 ≤
ℎ6𝑁

2𝑚𝑉 2𝑁

3𝑁
∑
𝑖=1

𝑛2𝑖 ≤ 𝐸 + Δ𝐸 (4.30)

In the classical limit this becomes the same as calculating the volume enclosed between two hypersphere

of radii 𝑉𝑁√2𝑚𝐸
ℎ3𝑁 and 𝑉𝑁

√
2𝑚(𝐸+Δ𝐸)
ℎ3𝑁 . As we did earlier we can reduce this instead, to the energy derivative of

the volume of a hyperball of dimension 3𝑁 and radius 𝑉𝑁√2𝑚𝐸
ℎ3𝑁 . This means 𝑊 takes the form:

𝑊 =
𝜕
𝜕𝐸 (

𝑉 𝑁

ℎ3𝑁𝑁!
(2𝑚𝜋𝐸)

3𝑁
2

Γ( 3𝑁2 + 1))
=

𝑉 𝑁

ℎ3𝑁𝑁!
(2𝑚𝜋)

3𝑁
2

Γ( 3𝑁2 )
𝐸

3𝑁
2 −1 (4.31)

Here we have added in 1/𝑁 ! to avoid over counting. Comparing this result to 4.28 we can clearly see
identify 𝛼0 = ℎ. This means that the volume associated to a single microstate 𝛾0 is simply 𝛾0 = ℎ𝑓 , where 𝑓
is the degrees if freedom of the system, as that’s how many different 𝑛𝑖 there are to vary.

4.12 Contact with Thermodynamics

• To see how we can go from the microscopic description of counting microstates, back to our nice and
familiar thermodynamics, we consider the following system.

Consider an isolated system split, by a partition into two subsystems, 1 and 2 (with out loss of generality we
can say that the system 1 is larger than 2). The systems have there own thermodynamic variables 𝐸1, 𝑉1, 𝑁1
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and 𝐸2, 𝑉2, 𝑁2, respectively. The system is in equilibrium. At some point we allow energy exchange between
the to systems. The two systems can now be considered one, described by the quantities 𝐸, 𝑉 and 𝑁 , where
𝐸 = 𝐸1 + 𝐸2. The number of microstates for this system is now:

Ω(𝐸1, 𝐸2, 𝑉 , 𝑁 ) = Ω1(𝐸1, 𝑉1, 𝑁1)Ω2(𝐸2, 𝑉2, 𝑁2) (4.32)

This is because fundamentally Ω tells us how many different configurations of the system there are that
result in the same energy, but system 1 and 2 are independent so naturally, the amount of different config-
urations is the product of the number of configurations of each subsystem.

4.12.1 Postulate

• At equilibrium the number of microstates realising the macrostate will be maximised.

• What we are essentially saying here is that it is far more likely for the system, when not in equilibrium to
evolve towards a state with higher number of microstates Ω as there are just more of them, and the system
has more ways of arriving at those scenarios then the ones with smaller Ω. Consider the case where we
have one particle in system 2 and the rest in system 1. Of course physically we know this is an incredibly
unlikely scenario and it is easy to see that it has a low number Ω associated with it as the system 2 can’t
be re-arranged in any way. So the product of the two number of microstates Ω1 and Ω2 is small. Where as
if we instead consider the scenario where both systems have an equal number of particles then they both
have large number of microstates and consequently the product Ω1Ω2 is large.

Another way of seeing that the most probable macrostate is indeed the one realised by the maximum
number of microstates is because this is where the system spends most its time. This is what we meant
by equation 4.17. This essentially coincides with the definition of equilibrium, the system spends most it’s
time where there are a lot of states.

4.12.2 Entropy

• Now we return to our two systems that have just been allowed to exchange energy. We want to know how
𝐸1 and consequently 𝐸2 = 𝐸 − 𝐸1, change as the system moves to a new equilibrium position. We know
that we have to maximise the number of microstates Ω = Ω1Ω2, so if 𝐸∗1 and 𝐸∗2 = 𝐸 − 𝐸∗1 are the values of
the energy’s at equilibrium. Then taking the derivative of Ω = Ω1Ω2 with respect to 𝐸1, we must have that:

Ω2
𝜕Ω1

𝜕𝐸1

||||𝐸1=𝐸∗1
+ Ω1

𝜕𝐸2
𝜕𝐸1

𝜕Ω2

𝜕𝐸2

||||𝐸2=𝐸∗2
= 0 (4.33)

Now 𝜕𝐸2
𝜕𝐸1 = −1 as 𝐸2 = 𝐸 − 𝐸1, so we can divide this equation by Ω1Ω2 to get:

1
Ω1

𝜕Ω1

𝜕𝐸1

||||𝐸1=𝐸∗1
−

1
Ω2

𝜕Ω2

𝜕𝐸2

||||𝐸2=𝐸∗2
= 0

⟹
𝜕 ln(Ω1)
𝜕𝐸1

||||𝐸1=𝐸∗1
=

𝜕 ln(Ω2)
𝜕𝐸2

||||𝐸2=𝐸∗2

(4.34)
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• We can now introduce the quantity 𝛽 = 𝜕 ln(Ω)
𝜕𝐸

||||𝐸=𝐸∗1+𝐸∗2
, So that the above equation 4.34 can be written

as 𝛽1 = 𝛽2. We know that in thermodynamics equilibrium between two systems is reached when their
temperatures are the same 𝑇1 = 𝑇2. Naively we might say 𝛽 ∝ 𝑇 , but if we remember that temperature is
defined as 𝑇 ≡ 𝜕𝐸

𝜕𝑆 , then looking at the definition of 𝛽, it makes much more sense to write 𝛽 ∝ 1
𝑇 as now at

equilibrium:

𝜕𝑆
𝜕𝐸

=
1
𝑇
∝ 𝛽 =

𝜕 ln(Ω)
𝜕𝐸

(4.35)

From the left most and right most expressions we can get an expression for entropy! If we denote the
constant of proportionality between 𝛽 and 𝑇 as 1/𝑘, i.e. 𝛽 = 1

𝑘𝑇 , Then entropy can be written as:

𝑆 = 𝑘 ln(Ω) (4.36)

This expression makes sense as if adding two systems together results in the number of microstates being
the product of the original two systems Ω’s, then the natural way to turn this into entropy would be a
function that separates products into sums, as entropy of two systems add together, its an extensive variable.
The most suitable function for this task is naturally the logarithm. The constant of proportionality here 𝑘,
is Boltzmann’s constant.

• We can repeat this experiment, now allowing the partition to move and particles to be exchanged so that
𝑉 and 𝑁 may vary too. This means that we have two extra expressions:

𝜕 ln(Ω1)
𝜕𝑉1

||||𝑉1=𝑉 ∗
1

=
𝜕 ln(Ω2)
𝜕𝑉2

||||𝑉2=𝑉 ∗
2

𝜕 ln(Ω1)
𝜕𝑁1

||||𝑁1=𝑁 ∗
1

=
𝜕 ln(Ω2)
𝜕𝑁2

||||𝑁2=𝑁 ∗
2

(4.37)

Again we know from thermodynamics that the system is at equilibrium when the values (𝑇 , 𝑃𝑇 ,
𝜇
𝑇 ) are the

same for both subsystems. So we must have that the following two equations are equivalent:

𝑑(ln(Ω)) =
𝜕 ln(Ω)
𝜕𝐸

𝑑𝐸 +
𝜕 ln(Ω)
𝜕𝑉

𝑑𝑉 +
𝜕 ln(Ω)
𝜕𝑁

𝑑𝑁

⟺
𝑑𝑆
𝑘

=
1
𝑘𝑇

𝑑𝐸 +
𝑃
𝑘𝑇

𝑑𝑉 −
𝜇
𝑘𝑇

𝑑𝑁
(4.38)

Which is true if we have 𝑆 = 𝑘 ln(Ω).

• We can also note that since entropy is extensive so then must be ln(Ω), meaning it is homogeneous degree
1.
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4.13 Entropy of an Ideal Gas

• We can now use this expression for entropy and the previously derived expression for the number of mi-
crostates of and Ideal Gas 4.28, since Ω = 𝑊Δ𝐸:

𝑆 = 𝑘 ln
(

𝑉 𝑁

ℎ3𝑁𝑁!
(2𝑚𝜋)

3𝑁
2

Γ( 3𝑁2 )
𝐸

3𝑁
2
Δ𝐸
𝐸 )

≈ 𝑘𝑁 ln
(
𝑉 (2𝑚𝜋)

3
2

ℎ3 )
+ ln(

Δ𝐸
𝐸

) − 𝑁 ln(𝑁 ) + 𝑁 −
3𝑁
2

ln(
3𝑁
2
) +

3𝑁
2

= 𝑘𝑁
[
ln
(

𝑉
ℎ3𝑁 (

4𝑚𝜋𝐸
3𝑁 )

3
2

)
+

1
𝑁

ln(
Δ𝐸
𝐸 ) +

5
2]

(4.39)

Where here we have used Sterling’s approximation. We now want to know if we can disregard any of
these terms. From Heisenberg we know that Δ𝐸𝑚𝑖𝑛Δ𝑡 = ℏ, ⟹ Δ𝐸𝑚𝑖𝑛

𝐸 ∼ ℏ
Δ𝑡𝐸 , so if we were to suppose

that | 1𝑁 ln (Δ𝐸𝐸 ) | ∼ 1 ⟹ 1
𝑁 ln ( ℏ

Δ𝑡𝐸) ∼ 1 ⟹ Δ𝑡 ∼ 𝑒±𝑁 , but this is very large as 𝑁 >> 1. So for finite
observations we can assume:

|
1
𝑁

ln(
Δ𝐸
𝐸 ) | << 1 (4.40)

This means that we can write:

𝑆 = 𝑘𝑁
[
ln
(

𝑉
ℎ3𝑁 (

4𝑚𝜋𝐸
3𝑁 )

3
2

)
+
5
2]

(4.41)

4.14 Probability distributions

We would like to be able to write down a probability distributions as they are very useful in helping us calculate
average quantities. Since we are thinking classically it doesn’t make sense to talk about discrete distributions,
so every distribution we see below will be continuous, so we talk about the probability of a particle having an
energy between 𝜖 and 𝜖 + 𝑑𝜖, which we write as 𝑃(𝜖)𝑑𝜖.

4.14.1 Boltzmann distribution

• First we consider the probability of a single particle having an energy 𝜖, when it belongs to an isolated ideal
gas with 𝐸, 𝑉 and 𝑁 . To find this we consider the single particle and the rest of the surrounding system
as two separate subsystems with energies 𝐸1 = 𝜖 and 𝐸2 = 𝐸 − 𝜖 respectively. Both these subsystems
have a corresponding, number of microstates that depend on these energies, Ω1(𝜖, 𝑉 , 1) for the particle and
Ω2(𝐸 − 𝜖, 𝑉 , 𝑁 − 1) for the rest. Then just as we had before, the number of microstates for the total system
must be the product of these two. Then if we want to find the probability we have to divide this product by
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the total number of microstates in the entire system, which is just given by Ω(𝐸, 𝑉 , 𝑁 ). Thus we can write:

𝑃(𝜖)𝑑𝜖 =
Ω1(𝜖, 𝑉 , 1)Ω2(𝐸 − 𝜖, 𝑉 , 𝑁 − 1)

Ω(𝐸, 𝑉 , 𝑁 )
(4.42)

It is usually easier to deal with this in a different form. If we can remember that we can write Ω = 𝑊Δ𝐸 , so
Ω1(𝜖, 𝑉 , 1) = 𝑊0(𝜖, 𝑉 , 1)𝑑𝜖 , Ω2(𝐸−𝜖, 𝑉 , 𝑁 −1) = 𝑊0(𝐸−𝜖, 𝑉 , 𝑁 −1)Δ(𝐸−𝜖). We can also safely approximate
Δ(𝐸 − 𝜖) ≈ Δ𝐸. Here 𝑊0 is the density of states for an ideal gas 4.28. This means the distribution takes the
form:

𝑃(𝜖)𝑑𝜖 =
𝑊0(𝜖, 𝑉 , 1)𝑊0(𝐸 − 𝜖, 𝑉 , 𝑁 − 1)

𝑊0(𝐸, 𝑉 , 𝑁 )
𝑑𝜖 (4.43)

• We also have to divide by the number of ways we can choose one particle, which in this case is 𝑁 , to avoid
over counting. We can then go ahead a plug in 4.28 and get the following messy expression:

(
𝑉
ℎ3

(2𝑚𝜋)
3
2

Γ( 32 )
𝜖
3
2−1

)(
𝑉 𝑁−1𝑑𝜖

ℎ3(𝑁−1)(𝑁 − 1)!
(2𝑚𝜋)

3(𝑁−1)
2

Γ( 3(𝑁−1)
2 )

(𝐸 − 𝜖)
3(𝑁−1)

2 −1

)(
ℎ3𝑁𝑁!
𝑉 𝑁𝑁

Γ( 3𝑁2 )

(2𝑚𝜋)
3𝑁
2
𝐸

3𝑁
2 −1

)

⟹ 𝑃(𝜖)𝑑𝜖 =
Γ( 3𝑁2 )

Γ( 32 )Γ(
3𝑁
2 − 3

2 )
𝐸𝜖1/2

(𝐸 − 𝜖)5/2
(1 −

𝜖
𝐸
)3𝑁/2𝑑𝜖

(4.44)

• We can do a couple of things to simply this. First of all it can be shown that:

lim
𝑛→∞

Γ(𝑛 + 𝛼)
Γ(𝑛)𝑛𝛼

= 1

⟹
Γ( 3𝑁2 − 3

2 +
3
2 )

Γ( 3𝑁2 − 3
2 )

≈ [
3
2
(𝑁 − 1)]3/2 ≈ (

3𝑁
2 )

3/2 (4.45)

And also Γ( 32 ) =
√
𝜋
2 . We can also use the fact that 𝜖

𝐸 << 1 to write:

(1 −
𝜖
𝐸
)3𝑁/2 = 𝑒

3𝑁
2 ln(1− 𝜖

𝐸 ) ≈ 𝑒−
3𝑁
2

𝜖
𝐸 (4.46)

Here we have taylor expanded the ln() around 1 − 𝜖
𝐸 = 1. This all means that we can write:

𝑃(𝜖)𝑑𝜖 =
2
√
𝜋 (

3𝑁
2𝐸 )

3/2

𝜖1/2𝑒−
3𝑁
2

𝜖
𝐸 (4.47)
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This is the well known Boltzmann distribution.

• If we are then interested in the distribution of momenta, we can use the fact that for free particles 𝜖 =
𝑝2
2𝑚 ⟹ 𝑑𝜖 = p⋅𝑑p

𝑚 , which can then be written as 1
𝑚p ⋅ 𝑑p = 1

𝑚𝑝
3 sin 𝜃𝑑𝜃𝑑𝜙𝑑𝑝. To account for all the

momenta making up the total energy of the particle we have to integrate this momenta over all possible
angles (we are only interested in the magnitude), but seeing as the only angle dependant term is the sin 𝜃,
we can use the property:

∫
2𝜋

0
∫

𝜋

0
sin 𝜃𝑑𝜃𝑑𝜙 = 4𝜋 (4.48)

To then write the distribution in terms of momenta, calling the quantity 𝛽 ≡ 3𝑁
2𝐸 :

𝑃(𝑝)𝑑𝑝 =
(
2𝛽𝜋
𝑚 )

𝑒
𝛽
2𝑚𝑝

2
𝑝2𝑑𝑝 (4.49)
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