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Stellar Structure 1 Observable properties of stars

1 Observable properties of stars

1.1 Luminosity
e Is the total energy emitted per unit time (power). To calculate this we add up all the flux (energy
passing through unit area dA per unit time dt) over all the different wavelengths. This makes it
become an integral:
[e.e]
L= 47TR2/ FrdA (1.1)
0
1.2 Parallax
e Is the apparent motion of an object with respect to the background due to the motion of the
observer. This can allow us to calculate the distance to stars, as the motion of the earth around
the sun is well measured. This results in the notion of a parsec which is the distance to a star that
creates a parallax angle of 1 arc-second:
1Au
arcsecond) = —— 1.2
P ) d(parsec) (1.2)
1.3 Magnitudes
e The apparent magnitude is a measure of brightness of a star as seen from earth, based on some

reference in the same filter:

&)

Absolute magnitude is the magnitude an object would have at a distance of 10 pc from the object:

d
M—m= —510g10( (14)

10/
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1.4 Effective temperature

e Stars are assumed to be emitting as black bodies in thermodynamic equilibrium. Thus their spectral
radiance is given by the Plank function:

2hc? 1
BT) =~ = (1.5)
e T 1
e This can be differentiated to get Wien’s law:
Apeak D = 0.0029 Km (1.6)

e One can also integrate this equation over all wavelengths to obtain the Stefan Boltzmann law:

Fiop = oT* (1.7)

Where sigma is the Stefan Boltzmann constant.

e This means that the bolometric luminosity is:

L = 4nR?cT! (1.8)

1.5 Stellar types

e See Galactic structure notes.

1.6 Colour temperature

e Another way of classifying stars based on temperature. Colour is chosen based on the filter in which
there black body peak is.

1.7 Excitation temperature

e The excitation energy is the minimum amount of energy required to promote a specific electron
from its ground state to a higher energy level within an atom or molecule.
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Then the relative number of atoms with electrons in different states is given by the Boltzmann
equation:

Ey
(Ep—Ea)

Ny _ @e_k? _ @e’ kT (1.9)

— =
N, Ya o~ Tal Ga

_ 13.6Ev
n2 -

Here g, = 2n? and E,, =

1.8 Ionisation energy

e [s related to the energy needed to produce a given ratio between the populations of two ionisation
stages.

This ratio is defined by the Saha equation:

Nit1 _ 2Zip1 2mmekp T\ -

= S (e (1.10)

_(Bj-By)
Here Z; = Z;; gije ™7  sums over all possible ways an atom can be stripped of an electron.

1.9 Optical opacity

e See Galactic structure notes

1.10 Photosphere

e This is the optically thick boundary of an astrophysical body and is defined as the region from which
the photons were last scattered. (i.e. where the light appears to come from). Mathematically this
is the depth into the star at which the optical depth is 7, = 2/3, averaged over the star. Notably
this is not the top of the atmosphere.

1.11 Absorption types

1.11.1 Bound-bound

e This is when a photon is absorbed by an atom, resulting in an electron becoming excited but not
ionised. No simple equation for describing contribution to opacity.

1.11.2 Bound-free

e This is when a photon is absorbed by an atom resulting in an electron becoming ionised, equation
is relatively simple to write down for H but becomes harder after that.
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1.11.3 Free-free

e This is when a free electron absorbs a photon in passing an ion. As it passes the ion it is accelerated,
absorbing a photon in the process.

1.11.4 Electron scattering

e This is an elastic collision between two particles i.e. photon and an electron. If hf << mec? then
the electron will be relatively unmoved by the collision resulting in only the direction of the photon
being altered. This is the dominant source of opacity in stellar interiors.

e The total opacity is the sum of all these contributions. For treating the interior of stars we can
combine all these sources and integrate over all wavelengths, to give the mean opacity that depends
only on composition, density and temperature. The results of this are usually approximated as:

K = kop™T" (1.11)

Where o and g are slowly varying functions of density and temperature and kg is a constant for a
given chemical composition.
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2 Equations of stellar structure

2.1 Assumption and variables for stellar structure

e Here we will assume we are dealing with an isolated body with spherical symmetry (thus our only
variable is ), (local) thermodynamic equilibrium and we will ignore for now, rotation, magnetic
fields and time dependence.

e The variables we will be considering are Radius r, Mass m(r), Luminosity L(r), Pressure P(r),
Temperature T'(r), Density p(r) and Composition X;(r).

2.2 Mean free path

e For a particle moving with a speed v over a time ¢, the mean free path is defined as the distance
traveled, divided by the number of collisions. So if ¢ = 772 is the cross-sectional area of an atom
with radius » = 2ag, as the radius is twice the Bohr radius ag and n is the number density of the
particles, then the mean free path is given by:

vt 1 1
A= =—=— (2.1)

novt no 4dmnag

2.3 Hydrostatic equilibrium

e In order for a star to not collapse under its own gravity, there must be a certain pressure that
negates gravity and keeps material static. It can be proved that in order for this to hold we must
have that for the pressure:

dP, M, p,
=_G 2.2
dr 72 (22)

Where p, is the density enclosed with in a radius . Hydrostatic equilibrium is essentially momentum
conservation.

2.4 Mass Continuity

e If we consider a infinitesimal thin shell of thickness dr then the volume dV is dV = 4wr?dr, so the
mass is dM = 4nr?p,.dr, so the mass conservation equation is:

dM,
= 47TT2pT (2'3)
dr

This is the second equation of stellar structure
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2.5 Minimum central pressure of a star

e Dividing the first stellar equation by the second

dP  GM

- ~ 2.4
dM  4mrd (24)

Then we can integrate from the center to the surface and notice that since gy, fqce > r for all r and
Psurface =0, then:

Ms'u,rface GM Msu'rfuce GM
Peenter — Psurface = / ——dM > / 47dM
0 At 0 47rTsurface
(2.5)
GM?
= Peenter > W

2.6 Mean molecular weight

e We can think of this quantity as the average mass of the particles present in units of the mass of a
hydrogen atom. For a neutral gas it is defined as:

-
X Ny m 06
pon = SLT = (2.6)
ij mH

Here we are summing over all the different types of atoms j, with N; being the number of each of
those atoms there are and m; their mass. For an ionised gas the mean molecular mass becomes:

Zj Nj%

TN >

Where z; is the number of electrons the atom j looses in the process of ionisation. Handily we can
then write the ideal gas law in terms of this mean molecular weight seeing as the mean mass m is
related to p by m = mpgu, so :
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2.7

Central temperature of a star

e We can now use this expression as well as the minimum central pressure to calculate the minimum

central temperature. If we assume the pressure is constant through out the star then p = M/ %ﬂ'R3 ,
then:

ump Peenter > HmHGM

o o (2.9)

Tcenter =

2.8 Radiation pressure
e The total pressure in a star comes from the pressure of the gas and the radiation pressure. The
radiation pressure P,.q is given by:
| Rp—
Prog = gaT (2.10)
Where a is the radiation constant a = 7.676 x 10716 Jm 3K 4. The radiation pressure is only
really relevant in high mass stars, only makes up 0.1% of the pressure in the sun.
2.9 Energy conservation in a star
e The contribution of dM, to the change in luminosity is dL, = €.dM,, where €, is the total energy

released per unit mass per unit time. Then using the second equation of stellar structure dM, =
4712 p,dr, so:

dL,

= 47rr2prer (2'11)
dr

This is the third equation of stellar structure.

2.10 Virial theorem

o If we take the first equation of stellar structure and multiply it by 47r3dr and integrate from center

to surface, then we get:

S S GM
/ drnr3dP, = — / T47T7“2prdr (2.12)
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Then we integrate by parts the LHS and notice that the RHS can be simplified with 47r?p,dr = dM,.,
so:

S S GM
An[r3P]% - 3 / AP dr = — / = —dM, (2.13)

C C

But since the radius at the center is 0 and the pressure at the surface is 0 so the first term vanishes.
Also the RHS can be recognised as the total gravitational energy ). For the last integral we consider
an ideal monoatomic gas for which the internal energy per unit volume is u = %nkT = %P. So the
RHS becomes:

s R
—3/ AP mr2dr = —2/ qurridr = —2U (2.14)
c 0

Where here U is the total internal energy of the star. Thus the two sides have become:

Q=-2U (2.15)

And since F = Q+ U, then either E = —U or E = % This is the Virial theorem. The implications
of this theorem is that if stars are able to convert potential energy €2 into internal energy U they
will then heat up and radiate away a certain amount of this energy. FE,.q is then either —%AQ or
AU. So half the energy from contraction is used the heat up the star and half of it is radiated away.
After the star has radiated energy away it cool and contracts repeating the process.

2.11 Kelvin-Helmholtz timescale

e This is the characteristic time scale on which a star radiates all its thermal energy. For a star of

mass M and radius R, since E,,q = —%AQ = 3?0%2, then:
Ereqa  3GM?
tog = 24 _ 2.16
T L T 10RL (2.16)

If we calculate this for our sun we see it is far shorter then how old the sun all ready is so this is
clearly not the whole story.

2.12 Nuclear fusion

e The total mass of the nucleus of an atom M (Z, N) is always less than the mass of the Z protons
and N neutrons that make it up. This means that when we fuse atoms energy is released. This
energy is called the binding energy and given by:

Q(Z,N) = [Zm, + Nm,, — M(Z,N)] ¢ (2.17)

-10 -
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For 4 hydrogen atoms fusing to helium the fractional energy change is:

2

AFE B 4mpc2 — MKeC

- P = 0.007 (2.18)

e Two charged particles need to over come the coulomb force to fuse, using, this happens when:

(2.19)

The temperature need for this is then 7 ~ 10'°K but the central temperature of the sun is roughly
107, so something is clearly wrong. This is where we need quantum tunneling. Due to the uncertainty
principle a particle has a finite probability of overcoming a potential barrier, allowing fusion to
happen at lower temperatures.

e Due to nuclear fusion we can get the nuclear timescale for a star to radiate away all its energy

_ Enye  0.007TMc?

true = 7 7 (2.20)

This gives a better answer to how long the sun will live.

2.13 Radiation transfer in the sun

e The mean free path can be defined as A = 1/no = 1/kp. For a random walk the displacement d of
a photon is given by:

d=\N (2.21)

Where N is the number of mean free paths travelled. The time taken to then random walk from
the center of the star to the surface is called the diffusion time and is given by:

N\ RZ

t~ = — = —
diff c Ac

(2.22)

- 11 -
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2.14 Energy transport by radiation

e We can take an diffusive approach, In spherical symmetry for particles the particle flux j is given
by:

dn

-D- (2.23)

j:

Where n is the number density of particles and D = %v/\ is the diffusion coefficient (v here is
velocity). For radiation the flux of radiative energy F; at radius r is:

F. = _DdUT (2.24)
dr

Where U, is the photon energy density, given by U = a7, assuming the radiation field inside a
star can be described by a black body. D is once again the diffusion coefficient and is given by

D= %c)\ = ﬁ, Thus the full expression is:
3
g = Aacly dT; (2.25)
3kp, dr
The using the equation for the radiative flux as a function of luminosity, F' = L/4mr?, Then:
dT, 3R Py,
= 2.26
dr 167acr2T3 " (2:26)

This is the 4th equation of stellar structure. If we instead look at energy transfer via convection we
can show that convection will happen if:

ar

e (2.27)

v /) Pdr

Where ~ is the adiabatic exponent g—"j, the ratio of heat capacities. Convection takes place on the
surface of low mass stars but high mass stars will have core convection.

- 12 -
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2.15 Polytropic solutions

e The standard equation of state is that the pressure in a star is just equation for an ideal Gas plus
the radiation pressure. This takes the form:

T 1
_ kT | ST (2.28)
mmyg

P

e To make this more accurate we would like to be able to solve the equations of stellar structure for
the four variables P, M, L and T', however the lack of boundary conditions for P and T" at the center
of a star make this impossible.

e To fix this we replace this equation with a polytrope that is assuming the pressure is equal to some
power of p indexed by the polytropic index n:

P=Kp' =Kp'Tn (2.29)

Where K is a constant and « is the adiabatic index, which by the equipartition theorem is v = 1+ %,
where f is the degrees of freedom of a single molecule. For an ideal gas f = 3 so v = 5/3. This is
assuming a non-relativistic gas, for relativistic gas v = 4/3.

2.16 Eddington luminosity

e Assuming that the pressure in a very large star is dominated by radiation pressure with no convec-
tion, then the maximum Luminosity a star can have and still remain in hydrostatic equilibrium can
be found from the following:

P _ 4 psdl (2.30)

P=P.., =1/3aT* -
rad /3a dr 3a dr

Then using stellar equation and solving for the Luminosity results in:

B dreGM
R

L (2.31)

- 13-
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3 Star Formation

3.1 Collapse of clouds

e Stars form in dark dusty clouds in interstellar space. Gas between the stars is called the interstellar
medium. It is easiest for stars to collapse when cold and dense. Molecular clouds (mainly Ha) are
very cold (10 — 30K ) and dense ~ 1 x 108 — 1 x 1019 m™3. We can use the Virial theorem for an
ideal gas, 2U 4 Q = 0, the same as discussed earlier for stellar interiof2.15] From this we see that
if 2U < |Q2| then gravity will win and a cloud of gas will collapse.

3.1.1 Jeans Mass

e This is the minimum mass a cloud of Gas with constant density p Can have and still initiate
spontaneous gravitational collapse. Using the Virial theorem, it can be shown that this mass is:

3/2 1/2
My = SkpT 3 (3.1)
Gumpy 4d7p

This can also be turned into the minimum radius that still results in collapse of a cloud, known as
the Jeans length:

1/2
R, = _15kpT (3.2)
AtGumpp

3.1.2 Converted Gravitational energy

e Converted Gravitational energy cannot stop this collapse. As collapse happens the internal energy
increases but not all of this turns into kinetic energy. There are rotational modes of the molecules
as well as excitation of the electrons to different energy levels. Since de-excitation emits photons
mainly at IR and mm- wavelengths to which the cloud is transparent to, this energy does not stay
in the cloud, allowing further contraction to proceed.

3.1.3 Fragmentation

e As a cloud collapses the density increases rapidly, by equation the Jeans mass then decreases.
This allows portions of the cloud to separate themselves from the rest and collapse on their own.
This can form multiple stars.

3.2 Protostars

e A protostar is a very young star that is taking in mass from its parent star-forming cloud. It contracts
and heats until the core temperature is sufficient for hydrogen fusion. Protostars appear above
the main sequence as they are larger then main sequence stars while still collapsing. Luminosity
decreases even as its temperature rises because it is becoming more compact.

- 14 -
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3.3 The Main sequence

10 000 s000

) temperature (K)

Figure 1: Main sequence lifetimes

e The main sequence is defined as all stars that are fusing Hydrogen in their cores. Equating the
ideal gas law and our central pressure approximations we get that 7" o< pM/R. The Minimum
temperature for fusion is 7' > 5 x 106K which corresponds to a mass of ~ 0.08M. Below this mass
are brown dwarfs which hh-=ave no sustained fusion and are thus not stars.

e There is also a measured relationship relation the mass of a star and its radius on the main
sequence. This comes from https://www.daviddarling.info/encyclopedia/M/mass-radius_
relation.html and is as follows:

R oc M98 (3.3)

15 -
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Initial Mass
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Figure 2:
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