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Calculus on Manifolds 1 Topology on R”

1 Topology on R"

1.1 Metric space

e Let X be a set, A metric on a set is a function that measures distances d : X x X — R. It has the
following properties:

N

(1.1)

(X, d) together make a metric space.

e Any subset Y C X is itself a metric space with d(z,y) (restricted to Y).
Y XY

1.2 Open/Closed

e Let (X,d) be a metric space U C X is open if Vp € U, 3 € > 0 st. Be(p) := {z € X|d(z,y) < €}
and closed if X — U (the compliment set) is open.

e If we have U C Y C X, (X,d) a metric space, for us in all applications X = R™. U is open/closed
in (Y,dlyxy) <= 3V C X open/closed st. U=V N Y.

1.3 Continuity

o If we have f : X — Y, with X and Y metric spaces, is continuous if, f~1(U) is open with U C Y
is open.

If f: X — Y is a bijection, continuous and f~! continuous we call f a homomorphism.

1.4 Compact

e X is compact if every open cover has a finite subcover , i.e. V {Uytacr, Uo € X (U, open) st.
X CUperUa  then 3oy, .y € st X CUq U...UUg,.

1.5 Heine Boral theorem

e X C R" is compact if bounded (3 R € R st X C Br(0) ) and closed in R™.

1.6 Differentiation

o [:U—V, (UCR" V CR™) is differentiable at p € U with derivative D f(p) € Mat(m,n) if:

i 4 @) = f(p) = Df(p)(z — p)

T—p l = pl

=0 (1.2)




Calculus on Manifolds 1 Topology on R”

e fis (of class) C! if it is differentiable at all p € U and Df : U — Mat(m,n) = R™" is continuous.
o fis C"if Df is O™~ 1, fis smooth or C* if it is C* V ¢ > 0.
e If we have f: U — R™ , (U € R"). Then z — (fi1(x),..., fm(z)) is C", if:

0 0

8.%'2'1 8.7}%

Exists, and is continuous for all k € {1,...,r},i1,...,3x € {1,...,n} and j € {1,...,m}. In which case
the derivative can then be expressed as:

Oh . . . 9h
ox1 Oxn
Df=1| - . . (1.4)
Ofm . . Ofm
8&?1 81‘n

1.7 Chain rule

o Consider U % vV % W, where f and g are differentiable (or C"), then so is f o g and:

D(fog)(x) = Df(g(x))- Dg(z) (1.5)

This is the chain rule and the - here refers to matrix multiplication.

1.8 Diffeomorphism

e If we have f : U — V , a smooth bijection and U, V open (in R” and R™ respectively) st. f~1V — U
exists and is also smooth. Then we call f a diffeomorphism.

1.9 Inverse function Theorem

e Let f:V—oR"beC" (1<r<oc0)andV CR" ForpeV , suppose Df(p) is non-singular (i.e
an invertible n x n matrix <= det(Df) #0). Then 3 p e U C V , U open, st,

— flu: U — f(U) , is a C"-diffeomorphism. i.e. f|y: U — f(U) is a bijection
— f(U) is open
— f Yy :U— f(U)is C".
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2 Manifolds

”Slogan” (informal definition) M C R™ is a manifold if it is "smooth” without corners/intersections

2.1

Manifolds

e Let d > 0, M C R" is a smooth/C" manifold of dimension d if Vpe M, IpeV c M ,U CR* (V

and U open) and a: U — V, st:
— « is smooth/C"
— « is a bijection with a continuous inverse ( <= is a homomorphisim)
— Da(x) has Rank d.

We will see this means « is a diffeomorphism.

2.1.1 Parameterised manifold

e Sometimes a only a single function « : U — M is needed in the definition of a manifold. In this

case we call (M, «) a parameterized manifold.

From now on we will only discuss smooth/C> manifolds

2.2 Alternate definitions
o If we have a set M CR" , d >0, p € M. Then the following are equivalent:
—3dpeVcM UcCR? (Vand U open), a: U — V a smooth homomorphism, st, Da(x) has
rank d, Vz € U.
—3IpcVCR",UCR"(VandU open), 3:U — V adiffeomorphism and 3(UN(R? x {0})) =
VM.
e This second definition is new and the set U N (RY x {0}) is just the intersection of U C R™ and the
space R? extended into R™ by adding 0 to the d dimensional tuples n — d times until they become
R™. This is effectively saying we want to be able to straighten out manifold neighbourhoods.
2.3 Locally smooth

We want to say a d- manifold looks locally like R

Let M C R" , N C R™ be subsets. A function f: M — N is smooth if 3 M C V' C R" (V open)
and f:V — R™ smooth st, f[py = f and f: M — N is a diffeomorphism (It is a smooth bijection
and has a smooth inverse). Note that we do not require f to have f~1o f =1.

It follows that we can say: f : M — N a diffeomorphism, A C M = fla: A — f(A)isa
diffeomorphism.

— Remark These two facts are used in the proof of the following theorem. This theorem looks
exactly like the definition of a manifold but note the swapping of V' and U, which changes the
statement to that the condition for a manifold is that there is a smooth mapping from the
manifold to R,
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2.3.1 Local smoothness definition of a manifold

e Let d > 0, M C R" is a smooth/C" manifold of dimension d if Vpe M, IpeV Cc M ,U CR* (V
and U open) and o : V — U, st « is a diffeomorphism.
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3 Partitions of unity

3.1 Main idea
e Given {U;};c; a partition of unity is a collection of smooth functions {¢;}, ¥; : R" — [0,00) a
diffeomorphism st {z|¢;(x) # 0} C U; st Y. ¢i(x) = 1.
e We have a local definition of a manifold and we want to extend it so that we have one single function
smooth across all of M.
3.2 Theorem
o Let ROV =J,c4 U , where U, are open, then there exists ¢1, ¢2,... V —[0,1], st:
— Foreachi € N Fa € Ast S, :=supp(¢;) = {z € V|¢i(z) # 0} C Uy,
— Each p € A has a neighbourhood intersecting finitely many S;’s.
= Dt bilr)=1,Vz eV,
— S;’s are compact.
— 1); are smooth.
{1} is called a partition of unity subordinate to {U,}.
3.3 Lemma 1
e {U,} as above, then 3 p1,pa,... € R" €1, €, ... € Ryg st:
~ Uy Bulp) =V
— Each Bay,(p;) is contained in a U,.
— Each point p € V' has a neighbourhood intersecting finitely many Ba., (p;).
3.4 Sub-lemma
e One can find k1 Cky C ... CV st:
— k; are compact.
— k; C ki
—Uimki=V
3.5 Lemma 2

Let p € R", e > 0 Then 3 ¢ : R™ — [0, 1] st:
— 9 smooth.

— supp(¥) C Bae(p)
— 1 >0, on B(p)

- 10 -
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3 Partitions of unity

3.6 Extension of locally smooth functions

e Let M C R"™ a subset , f: M — R"™. Suppose f is locally smooth ,i.e Vpe Mdp eV C M, st

flv : V= R™ is smooth, Then f is smooth on M.

This theorem is proved using partitions of unity.

- 11 -
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4 Boundary of manifolds

4.1 Upper half plane

e We define the upper have plane in R? to be: H := R4 x Ry, that is:

H= {(1‘1,1'2, ...,l‘d)|$d > 0} (4.1)

e The boundary of this plane is then defined as: OH := R%! x 0 C H. We then have that H := H\OH.

4.2 Boundary of a manifold

e A subset M C R"™ is a d-manifold with a boundary if it is basically diffeomorphic to open subsets
of H . thatisVpe MIpeV c M ,U c H? (V and U open) and a : U — V a diffeomorphism.

4.2.1 Proposition

e The condition is equivalent to a being a smooth homomorphism and Da(x) being of rank d V z € U.

4.3 Lemma

e If we have H? 5 U % R” smooth with extensions & : U — R™ , (here U C U). Then Da(x) ¥V z € U
does not depend on the extension.
— For z € HY, Da(z) = Da(z)
z;

— For x € OHY N U, Da(r) = (&%(x))‘ . Where for j # d this derivative is defined in the
27-]

normal way, but for j = d, instead of having a two sided limit in the definition we use a one
sided limit,from the side that is in the half-plane.

Oa;(x) lim ai(x + eeq) — ayi(x)
8$d N e—0t €

(4.2)

4.4 Change of co-ordinates transformation

e Let M be a manifold with a boundary and «; : V; — U;, ¢ = 1,2, two co-ordinate patches. Then
02_1 oaq;: al_l(Ul NUz) — 042_1(U1 N Us) is a diffeomorphism.

This is essentially saying we should be able to map smoothly between the pre-images of the co-
ordinate patches that map to the same part of the manifold.

4.5 Interior and Boundary points

e Let M be a manifold with a boundary.

- 12 -
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e We call p € M an interior point if 3 « : U — V a co-ordinate patch, st, p = a(x), Vz € HeNU.

Then we can define:

M = {x € M|z is an interior point } ] (4.3)

We call p € M an boundary point if 3 a: U — V a co-ordinate patch, st, p = a(z), Vz € OHNU.

OM = {x € M|z is an boundary point } ] (4.4)

Warning: These definitions are not the same as in topology. M is not equal to the topological
interior of M in R™ and the same for dM.

4.6 Boundary of manifold is manifold
e let M be a d-manifold with a boundary. Then M is a (d — 1)-manifold with a boundary.
4.7 Lemma
o M =MUIM.
(Disjoint union, a union with the additional information that the sets don’t have any elements in
common).
4.8 Manifolds from functions

Let f: R™ D U — R be a smooth function (U open), we define:

’ M = {z € U|f(z) = 0} = f({0}). (4.5)

[ N ={z € U|f(z) >0} = f}([0,00)). (4.6)

Suppose that V x € M, Df(z) has rank 1, i.e. Df(x) # 0, then N is a manifold with boundary
ON = M.

- 13-



Calculus on Manifolds 5 Tangent spaces

5 Tangent spaces

5.1 Tangent spaces

e Let M € R” be a manifold with a boundary, p € M, a: U — V be a chart around p, g € U be st
a(xzg) = p. The tangent space of M at p is:

T,M := Image(Da(xg)) C R" (5.1)

5.1.1 Lemma

e This definition does not depend on c.

5.2 Maps Between tangent spaces

e Let M, N be manifolds with boundaries and f : M — N a smooth map. Then D f(p) = Df(p), for
some extension f of f, defines a linear map D f(p) : T,M — Ty, N for all p € M.

5.3 Tangent Bundle

e Let m C R” be a manifold with a boundary. then the Tangent Bundle of M is defined as the disjoint
union of all the tangent spaces: TM = |_|peM T,M. ie.:

TM = {(z,v) e M xR"|v e T, M} (5.2)

We then have that:
— TM is a 2d-manifold with a boundary.
— f:M — N smooth = f(p): TM — TN i.e. (p.v) = (f(p), Df(p)v) is smooth.

— if we have M L N % L smooth —> D(go f)=Dgo Df , (chain rule).

5.4 Regular and Critical values

e let f: M — N be smooth, we say p € N is a regular value if Df(x) : T,M — T,N is onto
(surjective) V x € f~1({p}), otherwise we call p a critical point.

5.4.1 Regular value manifold

e If we have f : M — N be smooth, 9M = @ = ON and p € N a regular value. Then L = f~1({p})
is a manifold. Moreover, T,,L = ker(D f(x) : T,M — T,N).

— Remark: We can find cases where this doesn’t work. For example for f(z,y,2) =z —ay > 0,
0 is a regular point (Df = (—y, —, 1)) but the corresponding L = f~1({p}) is not a manifold
with a boundary as OL does not have 0 as a regular point for 0L = (z — zy, z) : R® — R? . To
fix this we just have to restrict the boundary of L to L = f~1({0}) N dM.

- 14 -
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5.5 Sard’s Theorem

o Let f: M — N be smooth. Then the set of critical values crit(f) C N has "measure zero”. In
particular {p € N|p regular value of f} is dense in N.

- 15 -
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6 Multi-linear Algebra

let V be a vector space. A function T : V¥ — R is called multi-linear, (or a k tensor), if for
U1y eeny Uy ooy U € T the function v — T'(vy,...,0;—1,V, V41, ..., Vk) is linear. This just means it is
leaner in each variable.

The space of all such functions is denoted £¥(V'), so:

LFV) :={T: V¥ - R| T multilinear} (6.1)

Usually we denote £}(V) = V* and £°(V) = {0}. We can then show that £¥(V') is a vector space
with (Af +g) (01, ..., ve) = Af (01,0, vk) = g(v1, . 08), A € R

6.1

Basis vectors

Let e; be a basis of V, we define e/ € V*, via efv; = €/ >.;aie; = a;j. These form what More
generally for I = (i1, ..., i1), we defined e/ (vy,...,v) = €1 (vy) - -+ - e (vp).

The set {e},I € {1,...,d}* forms a basis of £¥(V). In the particular dim£¥(V) = (dimV)¥.

6.2

Tensor product

let f € £F(V) and g € £Y(V), we define the following operation f ® g € LF(V), by:

/ ®g(1}1, "'avk-i—l) = f(vb ""Uk) ) g(vk—‘rlv "-avk’-i-l) (62)

This is the tensor product and has the following properties. let f, g and h be tensors, then:

fRgeh)=(fog @h
Af)@g=Af®g)=f®(\g)
(f+9)@h=fRh+g®h, h(f+9)=hRf+hR®yg

eI:e“®...®e7’k

6.3

Dual transformation

e Let A:V — W be a linear map. We define the dual transformation, A* : LF(W) — £¥(V) by :

(A*f)(vl,...,vk) = f(AUl,...,AUk) (64)

- 16 -
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e It can then be shown that the dual transformation has the following properties:

A* is linear
A(fog) =A"fo Ay (6.5)
(A-B)* =B A"

17 -
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7 Alternating Tensors

7.1 Symmetric/Alternating tensors

e A tensor f € LF(V) is called:

— symmetric if f(vi, ..., 0, Vg1, ooy Uk) = F(U1, ery Uik 1, Vi oony )

— alternating if f(v1, ..., Vi, Vg1, oo V) = —F(V1, ooy Vi1, Viy ooy vi) We let SFV and AFV denote

the vector space of symmetric/alternating respectively.

7.2 Symmetric group

e The permutation or symmetric group is defined as:

S ={c:{1,..,k} = {1,...,k}o a bijection}

(7.1)

Since it is a group it also follows that for o, 7 € Sy, then c o 7,07 € S,

7.2.1 Elementary permutation

e An elementary permutation is defined as:

i+1, =i
ei(l)=<1i, l=i+1

[, otherwise

(7.2)

7.2.2 Lemma

e Every o is a composite of the elementary permutations e;.

7.3 Sign function

e There exists a function, sgn : S, — {£1} st:

— sgn(o o7) = sgn(o)sgn(r)

sgn(e) = —1

sgn(o) = (—=1)™, if o is made of m elementary permutations.
— sgn(o~ 1) = sgn(o)
— sgn(o) = —1, if o keeps p # ¢ fixed and keeps everything else fixed.

Moreover, the first and second property here uniquely determine sgn.

- 18 -
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7.4 Permutation of tensors

o If we have f € LF(V), o € S, then we can define the following:

fo015 e 08) i= FUo(1)s - Vo)) (7.3)

7.4.1 Lemma

e LF(V)is a linear Sg-representation if for f € L¥(V), fo7 = (f7)%, f7 = f (i.e. it is symmetric) and
f + f7is a linear map from LF(V) — LF(V).

7.5 Sgn definition of tensors

e For fc LF(V),0€8,
— f is symmetric iff f7 = f,V o € Sy
— [ is alternating iff f7 = sgn(o)f, V o € Sk

7.5.1 Lemma

e f € LF(V) is alternating iff f(vy,...,vx) = 0, whenever v; = v, for some i # j.

7.5.2 Lemma

e Let f € A¥(V) and suppose f(e;,,...,e;) =0,V (i1 < -+ < i), then f =0.

7.6 Alternating Tensor

o Let I = (i1 < ... <1iy), we define a unique k-tensor 1y as:

vr =Y sgn(o)(e)’ (7.4)

This acts on a set of basis vectors ej,, ..e;, as follows:
17 if (jlv"'vjk) = (ila-“aik)
1/}1(6.717 "ejk) = . (7.5)
0, otherwise

This is because (e!)(e;,,..ej,) is defined to act by: (e'lej,)(ei2ej,) - - - (elley, ).

7.7 Basis of Alternating tensors

e {11}, with I ascending, form a basis for A*(V). In particular dimA*(V) = (Z), where n = dimV.

-19 -
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— This is because we can write any alternating tensor f € A¥(V) in terms of these tensors.
Consider g = > ;d v, where dj = f(ej,,...,ej5, ) (output of a tensor so just a scalar) and J
is all ascending indices of order k. Then the action of this new function g on the basis vectors
g(€iry.yei) = dr - (1) = f(eiy, ..., €;,), so we can say that ¢ = f and thus any alternating
tensor f can be expanded over 1.

— It can also be noted that if k = dimV = dimA%(V) = 1.

e This allows us to write:

ARV = {Aph2m)| )\ e R} (7.6)

7.8 Alternating Dual

e Let B:V — W be a linear transformation, If f is an alternating tensor, then B*f is also an
alternating tensor.

7.9 Alternating dual

e Let B :V — W be a linear map, then B* restricted to B* : A¥(W) — A*(V) , that is B*f is
alternating if f is.

7.9.1 Dual determinant

e For B:V — V and k = dimV = n, then we have that:

B*f = det(B)f, fe AX(V) (7.7)

- 920 -
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8 The wedge product

The motivation behind this is that we would like to be able to combine alternating tensors in such
a way so that the result is also an alternating tensor!

8.1

The Wedge product

3 an operation A¥(V) x AYV) — A*H (V) ((f,g) = f A g) satisfying the following:
—(fAgNh=FN(gNh)
— (f,9) = f Agisbilinear, (f +Xg) Ah=f A+XgAh)
— fArg=(=Drignf
— ol = e A A€t for a basis e; of V, I = (i1 < ... <ig).

The wedge product is uniquely defined by these for properties, furthermore let T': V. — W be a
linear map, then:

T*(fAg) =T fANT*g € AL (V) (8.1)

8.2

Alternating algebra

The direct sum @3, A*(V) form and associative, graded (anti-symmetric ) commutative algebra,
module in V st: et A+ Aelk =)l

8.3

Form of the wedge product

So far we have just said there exists a wedge product but what does it actually look like? To do
this we have to define a specific operator:

8.3.1 Averaging operator

e Thisis A: LF(V) — L£F(V) and acts by:

Af = Z sgn(o)f? (8.2)

€Sk

This operator satisfies that:
— A is linear
— Af € AK(V)
— If f € A¥(V), then Af = k!f

e This then allows us to define the wedge product for I € A¥(V) and g € A (V):

frg=pAf @) (8.3)

- 21 -
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9 Differential forms

e Let M C R"™ be a manifold with a boundary. A differential form of order/degree k is a smooth

function:

[ w:{(p,v1,...,v5) € M xR" x - - x R"|v; € T,M} (9.1)

st, VpeM, w,=wp) =wp,vi,..,v): T,M — R, is an alternating tensor. Thus we can also
say that w: M — [ |,cp, AR (T, M), st: w, € AF(T,M).

9.1 Space of differential forms
e Let QF(M) be defined as follows:
[ QF(M) = {w| w a smooth differential form of degree k} (9.2)
We can also define the similar QX (M) as:
[ QF(M) = {w| w same as above but not necessarily smooth} (9.3)
We then have that: Q°(M) = C*(M) = {f : M — N| f smooth}.
e OF(M) is a vector space under point-wise addition/ multiplication with scalars.
9.2 Basis k£ forms

Recalling that e/ (z1, 29, ..., 7,) = x; € R, for € R™. If we look at the form of ¢;(z) in and
the definition of the wedge product in then we can see that we can re-write vy as:

Yl =€t Nef2 . pnet ‘ (9.4)

And we end up denoting this:

[ P! = da™ Ada® - Nda™ = da! ] (9.5)

These 17 are called elementary k forms (since each e’ is a 1-form). It is also worth noticing that:

[ dml(vl,vg, ...,Uk) = det([vl,VQ s Vk]) (96)
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e We then have that each k tensor w(p) can be written uniquely in the form:

w(p) = % br(p)da’ (p) (9.7)

Where [I] denotes any increasing sequence, that means no repeating index’s, but it does not have
to be of length k. If each br(p) is smooth, then so is w.

9.3 Pullback

e Let f: M — N be smooth, we define f* : QF(N) — QF(M) as:

(f*W) (pa U1y -ny Uk) = w(f(p)v Dfpvb Dfpv% ceey Dfpvk) (98)

f* is a well defined linear map. We may also write (f*w), € A*(T,M). With these definitions it
can be proven that:

— id}, = idg- ()

— (fog)*=g*o f* For L & N & M smooth. This map is called a pullback.

9.3.1 Smoothness condition

e An element w € Q]g(M) is smooth if Vpe M, Ja:U — V C M a co-ord patch around p st,
a*w € QF(U) is smooth.

9.3.2 Differential form of wedge

e Let w e QF(M), n € QY(M), we define w A € Q¥ (M) by:

(WAR)p =wp A1 (9.9)

e It can also be shown that if we have f: M — N smooth, then f*(wAn) = f*wA f*n

9.3.3 Conclusion

o Q°(M) := P2, (M) is a graded-commutative (anti-commutative) associative algebra structure,
with Q°(M) = C°°(M) (the set of a all smooth 1-d functions on M).

e It also has that if f: M — N, then f*: Q*(N) — Q®*(M), preserves the above structure.

It is also worth noting that Q¥(M) = 0 for £ > dimV as then there are more elements in the
sequence i1, ..., i, then there are dimensions, so dz** A dz*? - - - Adx, must have a repeating index,
making it 0 and thus each w is also 0.
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10 Exterior derivative

e Let M be a manifold with a boundary, 3 a unique linear map d : Q¥(M) — QFF1(M) defined for
all £ > 0 st:

— If f € C®°(M) = QM) then df,(v) = Df(p)v
— If w e QF(M),n € QY(M), then d(w An) = dw An+ (—1)Fw A dn.
— d(dw) = 0, more over if F': M — N is smooth then d(F*w) = F*dw

10.0.1 Exterior Derivative of k-forms

e We know how this derivative acts on 0-forms based on the first property, but how does it act on
a k-form w? To find this we can just look at our expression of k-forms in terms of the elementary
k-forms in [9.7] With this expression dw is defined as:

dw = d Z brda! = Z dby A da! + Z brd2a!
[1] [1] [1]

(10.1)
= db; Nda'
7

Where we have used the property that d? = 0.
e One can also use this expression to show that d?w = 0 as since by is a 0 form, d?b; = Z?’j:l D;D;by,
i.e. all second order partial derivatives, but since by, must be a smooth function D;D;b; = D;D;by,

so since d¥ =37, 37", D;Djbrdx! =%, > s (DiDjbr — D;D;br)dx! =0 , as swapping dz’i and

dx'i, picks up a minus sign.

10.0.2 Alternate definition

e Alternatively if we have o : U — M, be a patch around p. we can define dw as:

(dw)p == (") du (a’w)), ] (10.2)

This is well defined and independent of the choice of a.

10.1 Naturality

e Let F': U — V be smooth, w € QF(V) . Then:

[ Frdw = d(F*w) ] (10.3)
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11 Vector Fields

e A vector field is a smooth function X : M — T'M, st. X(p) € T,M. We then define the set of all
vector fields on our manifold M:

X(M):={X: M — TM|X is a vector field} (11.1)
11.1 Isomorphisims to differential forms
e We can define the following isomorphisms for M C R:
hi: X(M) — QY(M)
2
d . .
> Z z'dz’
. i=1
SCd
Pt : X(M) — Q¢ — 1(M
. (M) (M) (11.2)
x
— erzd:vl A-ede VA dE A A da?
. =1
$d

oy X(M) — Q3 (M)

w s udzt A - A dx®

Note that these isomorphisms may not be natural, i.e. hi(F*x) = F*hi(z), is in general not true.
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12 Integrating forms

e In this section we will define what it means to integrate a k-form over a manifold M. To do this we
link our integrals back to R™, where we have well defined integration.

12.1 Fubinis Theorem

/f(xl, ey xM)dzt - da" = / {/ flt, . a)dat - dat| daett e da (12.1)
Rn—1 R!

12.2 Change of Variables

o Let F: Uy — Us, (U C HY, Uy C H") a diffeomorphism, then:

n

f(F(:c))detDF|dx1~-dxn:/ f(x)dx! - - - dx® (12.2)
Rn

12.2.1 Claim

e Change of Variables <= [ F*w = [w, if |detDF| = detDF.

12.3 Compact Support

e We say w € Qk(M) has compact support if supp w := {p € Mjwp # 0} is compact. We can then
denote QF(M) denote all the k-forms with compact supports.

12.4 Integral of a d-form

e Let M € H? (M open), w € Q4(M). We define the integral of this d-form as follows:

/ w= / u(z!, ..., e dzt - - - da? (12.3)
M R4

Here u is defined by w = udz! A - - - A dz? and is extended by 0 outside of M.
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13 Orientations

e In order to determine weather the result of integrating a k-form, has a + in front of it, we have to
define an orientation on the manifold we are integrating over.

13.1 Orientation preserving/reversing

e Let : M — N (N,M c H%), be a diffeomorphism. We call F' orientation preserving if detDF (p) >
0, V p € M and orientation reversing if detDF(p) < 0, V p € M. Note that detDF # 0, as F is a
diffeomorphism.

13.2 Proposition

e Let F' be as above and orientation preserving. Then:

[ /M Frw = /Nw, Y w e QUN) (13.1)

13.3 Overlapping Charts

e Let M be a manifold with a boundary. Let «; : U; — V; C M be charts. We say two charts a; and
oy overlap positively if a;l oo : ozfl(Vl NnVy) — a;l(Vl N V3) is orientation preserving.

13.4 Oriented manifold

e An orientation on M is the choice of collection of charts that pairwise overlap positively and cover
M.

We denote an oriented manifold by (M, {«;}).

We call a chart 8 : U — V, positive if it overlaps positively with all «; € {«;}. Tt is easy to see then
that. {a;} C {8} <= they define the same collection of positive charts.

13.5 Reversing orientation

e Set 7: H? — HY, (21, ...,2%) s (—2',...,2%). Given a patch a : U — M, then a o 7 is also a patch
with opposite orientation. Usually we denote this by: (M, {a;o71}) = —(M,{a;}) = —M.

Its clear to see that if we have M orientated then either «, or o; o 7, is positive .

13.6 Extension of interior orientation

e Let M be a manifold with a boundary. Suppose M=M \OM is orientable, then so is M. More
over, if A = q;, is an orientation on M, then 4, B = §; an orientation on M, st: A C B.

13.6.1 Corollary

e Let f : R® — R be smooth and 0 a regular value. Then f~!([0,00]) = M, carries a natural
orientation.
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13.7 Induced orientation

o Let (M,{a;}), be a oriented manifold with a boundary. Then, (OM, «; ), is an oriented
6HdﬂUi
manifold with what we call a restricted orientation.

e The Induced orientation on OM is (—1)% times the restricted one. This is so that stokes theorem
always holds!

13.8 Oriented maps

e Let f: M — N be a diffeomorphism and (M, {«;}), (N,{8;}), oriented manifolds. We say f is
orientation preserving if {f o a} are positive charts with respect to {3;}.

13.9 Positive charts wrt d-forms

e Given w € Q4(M) on M a d-manifold with a boundary. We declare o : U — M, to be positive iff
o*w € QUU), U € RY, st: a*w = udx' A - -+ Adx?, with u(z) >0, VaxelU.

e This defines an orientation <= w, #0, Vpe M.

13.10 Volume Forms

e w e QYM) is called an volume form if w, #0, ¥V p € M.
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14 Stokes Theorem

14.1 The integral

e The integral is linear:

/M)\w+77:)\/Mw+/M7] ] (14.1)

If —M, denotes M, with the opposite orientation then:

=

14.2 Stokes Theorem

e Let M be an oriented manifold with a boundary, then for w € Q¢~1(M):

[ [ | s

14.2.1 Corollary

e If M has no boundary (OM = @), then [, dw = 0.
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