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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

1 Co-variant formalism of electromagnetism

1.1 Maxwell’s equations

� We start by listing Maxwell’s equations in Gaussian units:

∇ ·B = 0 (1) ∇×E+
1

c

∂B

∂t
= 0 (2)

∇ ·E = 4πρ (3) ∇×B− 1

c

∂E

∂t
=

4π

c
J (4)

(1.1)

1.2 Continuity equation

� Taking the time derivative of the first Maxwell equation 1.1 divided by cand using the 1
c∂tE created

to sub in the fourth Maxwell equation, we get the following:

1

c

∂

∂t
(∇ ·E) =

4π

c

∂ρ

∂t

=⇒ ∇ ·
(
∇×B− 4π

c
J

)
=

4π

c

∂ρ

∂t

=⇒ ∂ρ

∂t
+∇ · J = 0

(1.2)

Where we have assumed that E is sufficiently smooth such that we can swap the order of ∇ and ∂t.
We also used the fact that ∇ · (∇×B) = 0. This is the continuity equation.

� To get the total charge we have to integrate these densities over a volume V :

∫
V

∂ρ

∂t
d3x = −

∫
V
∇ · Jd3x =

∫
∂V

J · dA (1.3)

Since the total charge of a volume is given by Q =
∫
V ρd

3x, and the flux through a surface ∂V = 0
is zero if V = R3 i.e the volume is all of space. This implies:

∂Q

∂t
= 0 (1.4)

I.e total charge is conserved.

1.2.1 Invariance of charge under Lorentz transformations

� The total charge with in a small volume d4x is an experimental invariant. That is that ρ′d3x′ =
ρd3x. We also know that the four dimensional volume element d4x = det(Λ)d4x′ = d4x′ is Lorentz
invariant. This must imply that ρ or as turns out for the sake of units cρ, transforms like the time
component of a 4-vector.
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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

� It is from this that we are motivated to combine ρ and J into a single 4-vector jµ. This then
naturally takes the form:

jµ =

(
cρ
J

)
(1.5)

Nicely this reduces the continuity equation to ∂µj
µ = 0. Where ∂µ = (1c∂t,∇) and ∂µ = (1c∂t,−∇) .

1.3 Vector and Scalar potentials

� As discussed before the magnetic field has an underlying vector potential such that B = ∇ ×A ,
(from the first Maxwell relation 1.1) and the electric field has an underlying scalar field such that
E = −∇Φ. But this last equation was under the assumptions of electrostatics. To find the right
solution we can write the second Maxwell equation 1.1 as:

∇×E+
1

c

∂

∂t
∇×A ⇐⇒ ∇×

(
E+

∂A

∂t

)
= 0 (1.6)

This last expression means the terms in the brackets can be written as (minus) the gradient of a
scalar field Φ, so:

E = −∇Φ− 1

c

∂A

∂t
(1.7)

� Now the third Maxwell equation 1.1 becomes:

∇2Φ+
1

c

∂

∂t
∇ ·A = −4πρ (1.8)

And the fourth Maxwell equation becomes:

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c2
∂Φ

∂t

)
= −4π

c
J (1.9)

Where we have written µ0ϵ0 as 1
c2
. We have now reduced the Maxwell equations to, two coupled

equations.

1.3.1 Lorenz gauge

� To decouple these equations we exploit the fact that these potentials can be Gauge transformed.
As discussed before we can transform A by:

A′ = A+∇χ (1.10)
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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

As this gives rise to the same magnetic field B. Now we must also then transform the scalar potential
Φ so that it gives rise to the same electric field E. For this to happen according to 4.7:

Φ′ = Φ− 1

c

∂χ

∂t
(1.11)

The invariance of the fields under these transformations is called gauge invariance. Equations 4.10
and 4.11 allow us to choose χ such that:

∇ ·A+
1

c2
∂Φ

∂t
= 0 (1.12)

This is the Lorenz Gauge and makes it so that 1.8 can be written as:

∇2Φ− 1

c2
∂2Φ

∂t2
= −4πρ (1.13)

And 1.9 becomes:

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J (1.14)

It is natural then from these two equations to define a 4-vector Aµ defined as:

Aµ =

(
ϕ
A

)
(1.15)

� We can also then define something called the d’ALembert Operator, denoted by □ and given by:

□ =
1

c2
∂2

∂t2
−∇2 = ∂µ∂

µ (1.16)

This simplifies things greatly as now we can just write the Lorentz gauge as:

∂µA
µ = 0 (1.17)

And with this gauge, our two equations 4.12 and 1.13 can be written as:

□Aµ =
4π

c
jµ (1.18)
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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

� The conditions 4.10 and 4.11 can now be written as one:

A′µ = Aµ − ∂µχ (1.19)

If we then wish to solve for χ in the Lorentz gauge, ∂µA
′µ = 0, means:

0 = ∂µ(A
µ − ∂µχ)

=⇒ ∂µA
µ = □χ

(1.20)

1.4 Electromagnetic tensor

� Since from the above defined 4-vector Aµ, we can get the components of E via Ex = −1
c∂tAx−∂xΦ =

−(∂0A1 − ∂1A0). We can also get the components of B = ∇ × A via Bx = ∂yAz − ∂zAy =
−(∂2A3 − ∂3A2). This works for all the components such that it makes sense to define a anti-
symmetric rank 2 tensor Fµν :

Fµν = ∂µAν − ∂νAµ (1.21)

This way Fµν and Fµν take the matrix forms:

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0



Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0


(1.22)

This is because to go from Fµν = gµαgβνFαβ, where g
µν is the metric. In special relativity this is

just the Minkowski metric, for which we use the (+−−−) convention:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.23)

� We would like to be able to reproduce Maxwell’s equations by manipulating this tensor. This can
motivated from examining the components, but we just give the results here. The third and fourth
Maxwell equations (inhomogeneous) can be produced from:

∂αF
αβ =

4π

c
jβ (1.24)
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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

For the homogeneous equations we need to construct something called the Dual tensor F̃µν which
is the Hodge Duel of the Electromagnetic tensor. Defined as:

F̃µν =
1

2
ϵαβγδFγδ (1.25)

This takes the following matrix form:

F̃µν =


0 −Bx/c −By/c −Bz/c

Bx/c 0 Ez −Ey
Ey/c −Ez 0 Ex
Bz/c Ey −Ex 0

 (1.26)

Using this the first and second Maxwell equations 1.1 can be produced from:

∂µF̃µν = 0 (1.27)

This identity is easy to see as ∂µF̃µν = 1
2ϵ
αβγδ∂α∂γAδ, but since partial derivative commute this

these terms just vanish.

� We can also reproduce the results similar to what we had earlier with 1.18. This comes from the
following argument. It can be shown that Fµν , satisfies the Bianchi identity, that is:

∂αF βγ + ∂βF γα + ∂γFαβ = 0 (1.28)

This can be checked most easily by examining the Fµν = ∂µAν − ∂νAµ form. What we can then do
is apply ∂α to this identity:

∂α∂
αF βγ + ∂α∂

βF γα + ∂α∂
γFαβ = 0

=⇒ □F βγ − ∂β(
4π

c
jγ) + ∂γ(

4π

c
jβ) = 0

=⇒ □F βγ =
4π

c
(∂βjγ − ∂γjβ)

(1.29)

Examining the components of this leads to the following equations involving the E and B fields.
□F i0 = □Ei = 4π

c (∂
ij0 − ∂0ji) so:

□E = −4π(∇ρ+ 1

c2
∂J

∂t
) (1.30)

And F 12 = □(−B3) =
4π
c (∂

1j2 − ∂2j1) so:

□B =
4π

c
∇× J (1.31)
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Classical Electrodynamics 1 Co-variant formalism of electromagnetism

� Further more since Fµν = ∂µAν − ∂νAµ =⇒ 4π
c j

ν = ∂µF
µν = □Aν − ∂ν(∂µA

µ), which in the
Lorentz gauge reduces to:

□Aν =
4π

c
jν

=⇒ □A =
4π

c
J

□Φ = 4πρ

(1.32)

All of these can be recognised as differential equations in the form of a wave equation.
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2 Wave equation

2.1 Cauchy problem

� The wave equation is a second order in time derivative, we expect the solution ψ(x, t) to be deter-

mined for all times given ψ(x,0) ,and ∂ψ(x,t)
∂t

∣∣∣∣
t=0

. We use the ansatz ψ(x, t) = A(t)eik·x to solve the

homogeneous wave equation:

□ψ =

(
1

c2
Ä− (ik)2A

)
eik·x = 0

=⇒ Ä+ c2k2A = 0

=⇒ A(t) =A(0) cos(c|k|t) + Ȧ(0)

c|k|
sin(c|k|t)

(2.1)

� We let u0(x) ≡ ψ(x,0) and v0(x) = ∂ψ(x,t)
∂t

∣∣∣∣
t=0

. Then these functions can be expressed as their

Fourier transformations:

u0(x) =

∫
d3k

(2π)3
eik·xũ0(k)

v0(x) =

∫
d3k

(2π)3
eik·xṽ0(k)

(2.2)

We now generalize the above expression of ψ(x, t) = A(t)eik·x. By the superposition principle, since
the wave equation is linear if we add any solutions together, they are also a solution. So we add up
all possible wave vector values k, which turns into an integral as they can take non-discrete values.
We then also divide by a factor of (2π)3, so that this looks like a Fourier transform!

ψ(x, t) =

∫
d3k

(2π)3

(
ũ0(k) cos(ckt) +

ṽ0(k)

ck
sin(ckt)

)
eik·x (2.3)

The inverse transforms of these functions are:

ũ0(k) =

∫
d3xe−ik·xu0(x)

ṽ0(k) =

∫
d3xe−ik·xv0(x)

(2.4)
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Classical Electrodynamics 2 Wave equation

We can then sub these in to obtain:

ψ(x, t) =

∫
d3k

(2π)3

∫
d3y

(
u0(y) cos(ckt) +

v0(y)

ck
sin(ckt)

)
eik·(x−y)

=

∫
d3y

[
u0(y)

(∫
d3k

(2π)3
cos(ckt)eik(·x−y)

)
+ v0(y)

(∫
d3k

(2π)3
sin(ckt)

ck
eik·(x−y)

)]
=

∫
d3y

[
u0(y)

∂D(x− y, t)

∂t
+ v0(y)D(x− y, t)

] (2.5)

We will find the form of D later.

� It can then be concluded that the solution of the homogeneous wave equation is determined at all
times, given u0 and v0.

2.2 Application to fields

� We can use this expression to figure out if the fields always satisfy Maxwell’s equations in the
vacuum. Say we have initial conditions E(x, 0) and B(x, 0) as well as Ė(x, 0) and Ḃ(x, 0) that
satisfy Maxwell’s equations, that is ∇ ·E = 0 = ∇ ·B, ∇×E+ 1

c∂tB = 0 = ∇×B− 1
c∂tE. Via 2.5

we can write:

E(x, t) =

∫
d3y

[
E(y, 0)

∂D(x− y, t)

∂t
+ Ė(y, 0)D(x− y, t)

]
B(x, t) =

∫
d3y

[
B(y, 0)

∂D(x− y, t)

∂t
+ Ḃ(y, 0)D(x− y, t)

] (2.6)

� To figure out weather these new fields still satisfy Maxwell’s equations we consider the following:

∂

∂x

∫ ∞

∞
f(x− y)g(y)fy =

∫ ∞

∞
(∂xf(x− y))g(y)dy = −

∫ ∞

∞
(∂yf(x− y))g(y)dy

= f(x− y)g(y)

∣∣∣∣∞
∞

+

∫ ∞

∞
f(x− y)g′(y)

(2.7)

For our fields, we assume they vanish at infinity so these boundary terms never matter. Applying
the above for each component of ∇· 2.6, results in the first term vanishing as it becomes via 2.7
∇ · E(y, 0) or ∇ · B(y, 0) , which we know is zero. In the second term Ė(y, 0) or Ḃ(y, 0) can be
re-written as c∇×B(y, 0) or c∇× E(y, 0), respectively. This means taking the ∇· 2.6, makes the
second term also vanish, meaning Maxwell equations one and three are satisfied. It can also be
shown that the other two equations are satisfied. We can conclude that if the Maxwell equations
are satisfied at t = 0, then they are satisfied for all t.

2.3 Properties of the fields

� If we have two solutions of Maxwell’s equations E,B and Ẽ, B̃ then αẼ+βE and αB̃+βB are also
solutions. This is because Maxwell’s equations are linear in the fields. This linearity also means
we can use complex fields and take the real or imaginary part of the function, as Re(z) is a linear
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function. As long as we only perform linear operations on these fields, we can avoid taking the real
part until the end. We cant however use these complex functions to calculated non-linear properties
such as the pointing vector as it is quadratic in the fields.

� This superposition principle implies we can use plane waves to establish properties of EM waves,
since a superposition of plane waves is a the Fourier transform of arbitrary function (x, t).

� We can write the fields as plane waves:

E = E0e
i(k·x−ωt)

B = B0e
i(k·x−ωt) (2.8)

Inserting these into the first and third Maxwell’s equations 1.1 in a vacuum we see:

∇ ·E = ik ·E = 0 =⇒ E ⊥ k

∇ ·B = ik ·B = 0 =⇒ B ⊥ k
(2.9)

Since k points in the direction of propagation of the waves, this means EM waves are transverse.
For the second Maxwell equations 1.1, we see:

∇×E+
1

c

∂B

∂t
= 0

=⇒ ik×E− iω

c
B = 0

=⇒ E ·
(
ik×E− iω

c
B

)
= 0

=⇒ E ⊥ B

(2.10)

2.4 In-homogeneous Wave equation

� This takes the following form:

□ψ(x, t) = 4πf(x, t) (2.11)

We can remember form magneto statics that we can solve equations like this if we have a greens
function. For the Laplace equation the greens function was G(x,x′) such that ∇2G(x,x′) = δ(x−
x′) , this means that G(x,x′) = 1

4π|x−x′| . Usually the notation G(x − x′) is used to emphasise

translational invariance, doesn’t matter where x or x′ are, all that matters is the distance between
them. Writing G(x−x′) also means that the solution Φ of ∇2Φ = 4πρ, is a convolution. This means
that the Fourier transform will be easier to deal with as the Fourier transform of a convolution is
the product of the transforms of the two functions.

� Our greens function is denoted D0(x
µ, x′µ) = D0(x

µ − x′µ), we can now use this to write down the
solution to 2.11:

ψ(xµ) =

∫
d4x′D0(x

µ − x′µ)4πf(x) + χ (2.12)
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Here χ is any function satisfying □χ = 0. We can check that if our Greens function satisfies
□D0(x

µ − x′µ) = δ(xµ − x′µ), then taking the D’lambert operator of this equation results in the
RHS reducing to 4πf(x, t).

� We can then look at the Fourier transform expression of D0(x
µ):

D0(x
µ) =

∫
d4k

(2π)4
e−ikµx

µ
D̃0(k

µ) (2.13)

Here kµ is the 4-wave vector defined as kµ = (ωc ,k). It can then be shown component wise that the
D’lambert operator acts on e−ikµx

µ
as follows, □e−ikµx

µ
= −k2e−ikµxµ , here k2 ≡ kµk

µ. This allows
us to set the condition that □D0(x

µ) = δ(xµ), by applying the D’lambert operator to 2.13:

□D0(x
µ) = −

∫
d4k

(2π)4
k2e−ikµx

µ
D̃0(k

µ) = δ(xµ)

δ(xµ) =

∫
d4k

(2π)4
e−ikµx

µ
=⇒ D̃0(k

µ) = − 1

k2

(2.14)

� Now we can re-write 2.13 as:

D0(x
µ) =

∫
d3k

(2π)3
e−ik·x

∫ ∞

∞

dk0
2π

e−ik0x0
1

k20 − k2 (2.15)

This integral can be solved by method of residues as we have to deal with the poles at k0 = ±|k|.
First it helps to write:

1

k20 − k2 = − 1

2|k|

[
1

k0 + |k|
− 1

k0 − |k|

]
(2.16)

To solve this integral we have to shift the poles by a small amount ϵ above the real line so that we
can apply the Residue theorem. We will then take the limit as ϵ→ 0 to obtain the true result. Our
contour for this integral will be a semi-circle that goes along the real line and then loops background
either in the upper half plane C1 or the lower half plane C2. We will show then that the integral
on the circular part does not contribute as we send the radius of the semi-circle R→ ∞. To decide
which curve to use we have to look at.

� To decide which path to use we have to look at the form of the e−ik0x0 part of the integral, since
we are considering the complex plane k0 is complex we can write this term as:

e−ik0x0 = e−iRe(ko)x0eIm(k0)x0 (2.17)

In the complex plane along the curve the imaginary part of k0 gets sent to infinity so in order for
this term to not contribute, we have to use the path C2 when x0 > 0 and C1 when x0 < 0. We can
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then go ahead and apply the Residue theorem. We define the following function I±(x) :

I±(x0) =

{
limR→∞

∮
C2

dk0
2π e

−ik0x0 1
k0±|k|−iϵ , x0 > 0

limR→∞
∮
C1

dk0
2π e

−ik0x0 1
k0±|k|−iϵ , x0 < 0

(2.18)

For x0 > 0 the integral is 0 as we have shifted the pole above the real line and C2 does not go
around the upper half plane. Then evaluating the integral and sending ϵ→ 0 we see:

I±(x0) =

{
ie±ix0|k|, x0 < 0

0, x0 > 0
= θ(−x0)ie±ix0|k| (2.19)

Where θ(−x0) is Heaviside’s step function. We could have also shifted the poles downwards below
the real line. This way we define a similar function J±(x0) as:

J±(x0) = lim
ϵ→0

∫ ∞

∞

dk0
2π

e−ik0x0
1

k0 ± |k|+ iϵ
= −θ(x0)ie±ix0|k| (2.20)

� Now we can return to our original integral 2.15, Here we can define two greens functions one for
x0 > 0 and one for x0 < 0. For x0 < 0 we defined the advanced greens function Dadv(x

µ):

Dadv(x
µ) =

∫
d3k

(2π)3
e−ik·x

I+(x0)− I−(x0)

2|k|
= −θ(−x0)

∫
d3k

(2π)3
e−ik·x

sin(|k|x0)
|k|

(2.21)

And the retarded greens function DRet(x
µ):

�

Dadv(x
µ) =

∫
d3k

(2π)3
e−ik·x

J+(x0)− J−(x0)

2|k|
= θ(x0)

∫
d3k

(2π)3
e−ik·x

sin(|k|x0)
|k|

(2.22)

Since θ(x0)− θ(−x0) = 1 we can also define D(xµ):

D(xµ) = Dadv(x
µ)−Dret(x

µ) =

∫
d3k

(2π)3
e−ik·x

sin(|k|x0)
|k|

(2.23)

It can then be recognised that D(xµ) = cD(x − y, t), from 2.5. Can be checked that □D(xµ) = 0.
As:

□D(xµ) = □Dadv(x
µ)−□Dret(x

µ) = δ(xµ)− δ(xµ) = 0 (2.24)

As we have constructed these functions to becomes delta functions when the D’lambert operator is
applied to them.
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� We can now go about calculating the integral in both Dadv(x
µ) and Dret(x

µ). To do this we convert
to spherical co-ords so chosen so that d3k = k2dkdϕd cos θ and k · x = |k||x| cos θ, i.e. the θ angle
in spherical co-ords is the same as the angle between the x and k vectors. This means:

∫
d3k

(2π)3
e−ik·x

sin(|k|x0)
|k|

=
1

(2π)3

∫ 1

−1
d cos θ

∫ ∞

0
k2dk(2π)

1

k
e−i|k||x| cos θ

1

2i

(
ei|k||x| − e−i|k||x|

)
=

1

(2π)2

∫ ∞

0
k2dk

1

k

1

2i

1

i|k||x|

(
ei|k|x0 − e−i|k|x0

)(
ei|k||x| − e−i|k||x|

)
= − 1

8π2x

∫ ∞

0
dk

(
ei|k|(x0+|x|) − e−i|k|(x0−|x|) − ei|k|(x0−|x|) + e−i|k|(x0+|x|)

)
= − 1

8π2x

∫ ∞

−∞
dk

(
ei|k|(x0+|x|) − ei|k|(x0−|x|)

)
= − 1

8π2x
2π (δ(x0 + |x|)− δ(x0 − |x|))

(2.25)

So since for x0 > 0, δ(x0 + |x|) = 0:

Dret(x
µ) =

1

4π|x|
δ(x0 − |x|)

=⇒ Dret(x
µ−x′µ) = 1

4π|x− x′|
δ(x0 − x′0 − |x− x′|)

(2.26)

The interpretation of this function is if we have a disturbance at (x′0,x
′), then it is felt at (x0,x).

Where:

x0 − x′0 = |x− x′|

=⇒ t− t′ =
1

c
|x− x′|

=⇒ tret = t′

(2.27)

Where tret = t − 1
c |x − x′| called retarded time. It is the regular time minus the time it takes for

light to propagate from the source to the observer. Using δ(cx) = 1
c δ(x) we can write:

Dret(x
µ−x′µ) = 1

c

δ(tret − t′)

4π|x− x′|
(2.28)

� Similarly for x0 < 0, δ(x0 − |x|) = 0:

Dadv(x
µ) =

1

4π|x|
δ(x0 − |x|)

=⇒ Dadv(x
µ−x′µ) = 1

4π|x− x′|
δ(x0 − x′0 + |x− x′|)

Dadv(x
µ − x′µ) =

1

c

δ(tadv − t′)

4π|x− x′|

(2.29)
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Here tadv is the advanced time which has the interpretation that at a signal at a future time is
influencing the present. But this violates causality. We often have no use for the advanced greens
function for this reason.

2.5 Lorentz covariance of the wave equation

� First we explain what we mean by invariant. Take for instance our covariant wave equation 1.29
□F βγ = 4π

c (∂
βjγ − ∂γjβ). We know that to boost any tensor to a different co-ord system we

have to ”replace” its components with new boosted ones using the boost matrix, x̃µ = Λµνxν . I.e.
F̃µν = ΛνγΛ

µ
βF

βγ , j̃ν = Λνµj
µ,∂̃ν = Λνµ∂

µ and □̃ = ∂̃µ∂̃µ = ∂µ∂
µ = □. This means the transformed

equation is:

□̃F̃βγ =
4π

c
(∂̃β j̃γ − ∂̃γ j̃β) (2.30)

This is of the same form as the original expression so we call the equation invariant. Now we look
at the wave equation involving our two greens functions. Here we can use the following fact:

1 =

∫
d4x̃δ(x̃µ) =

∫
d4xdet(Λ)δ(Λµνx

ν) =

∫
d4xδ(xν) (2.31)

Where the last step has used δ(Λµνxν) =
1

det(Λ)δ(x
ν), so we can say δ(x̃µ) = δ(xν) and since □̃ = □:

□̃Dadv(x̃
µ) = δ(x̃µ)

□̃Dret(x̃
µ) = δ(x̃µ)

(2.32)
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3 Lorentz transformations of the EM fields

� Here we Lorentz transform from the frame S to the moving frame S′. The co-ordinates transform
in the usual way:

x′µ = Λµνx
ν (3.1)

The indices of this boost matrix can be changed using the metric gµν :

Λµν = gµρgνσΛ
σ
ρ (3.2)

If we want to multiply these as matricides together, we must make sure to put them in the order
such that the contracting indices are closest. This means that Λµν = gµρΛσρgνσ.

3.1 Transforming the fields

� In order to derive how the fields transform we can simple the calculations with a few considerations
of symmetry. Lets say E′ = F (E,B) and B′ = G(E,B). If we recall the definition of the dual tensor
F̃µν , it is just the regular electromagnetic tensor Fµν with the E and B fields swapped (and also
sign of E field changed). But since both these tensors transform in the same way we can say that:

E′ = G(B,−E) =⇒ F (E,B) = −G(B,−E)

B′ = F (B,−E) =⇒ G(E,B) = −F (B,−E)
(3.3)

So we only need to calculate, one of these functions, so we will choose F .

� Consider a boost in the direction β
|β| , (β = v

c ). If we define a quantity called the rapidity ξ so that
βk = tanh ξk. Then the Lorentz transformation is given by:

Λ = exp(ξ ·K) (3.4)

Where the components of the vector Kj , j = 1, 2, 3 are generators of the Lorentz boosts, (4 × 4
matricides that parameterize a boost in each Cartesian direction). It is also nice to note that if
we set |ξ| ≡ ξ, then we can write cosh ξ = γ and sinh ξξ̂k = βkγ. These allow us to write out the
components of Λ. Λ0

0 = γ, Λ0
k = −γβk = Λk0, Λ

k
l =

γ−1
β2 βkβl.

The transformation of the electromagnetic tensor takes the following form:

F ′µν = ΛµρF
ρσΛνσ (3.5)

This calculation can then be carried out in matrix form resulting in:

E′ = γ(E+ β ×B)− γ2

γ + 1
β(β ·E)

B′ = γ(B− β ×E)− γ2

γ + 1
β(β ·B)

(3.6)
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This calculation only has to be done for the three E components and the components of B follow
from 3.3 We can easily invert these expressions as we just have to change from β → −β, this results
in:

E = γ(E′ − β ×B′)− γ2

γ + 1
β(β ·E′)

B = γ(B′ + β ×E′)− γ2

γ + 1
β(β ·B′)

(3.7)

� One good thing to notice from these equations, is that if we want to boost to a frame such that
one of the fields in the new prime frame is 0, lets say we want E′ = 0. Then we can use the ansatz
β ∝ B× E. This is done, first of all cause it nicely means the second term on the RHS of ??, and
secondly it is the only way that β ×E can be proportional to B. This is due to the triple product:
a× (b× c) = (a · c)b− (a · b)c.

3.2 Lorentz invariants

� We are interested in any quantities (related to the E and B fields) that are unaffected by Lorentz
transformations. These are simply any quantities who’s index’s contract. To find these we look
at all combinations of the two tensors we have, F̃µν and Fµν . The possible combinations are
F̃µνFµν , F̃µνF̃µν and FµνFµν . Turns out the last two are the same up to some factor so we only
need to compute the first two. This calculation results in:

F̃µνFµν = −4E ·B
F̃µνF̃µν = −2(E2 −B2)

(3.8)

We don’t actually care about the prefactors on these quantities and usually just say E · B and
E2 −B2 are Lorentz invariant.

� The fact that these quantities are preserved is useful in many ways. If for example E2 > B2, then
this must be true in all frames. We can possible find a frame where B′ = 0 , bot not E′ = 0 as
E′2 > B′2 ≥ 0. This is visa versa for E2 < B2.

We can also see that if E ·B = 0 then E ⊥ B or one of them vanishes. If E ·B ̸= 0, then there does
not exist a frame where these vanish.
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4 Radiation from general sources

� Here we will use the above derived greens functions to solve the wave equation for Aµ(xν), in the
Lorentz gauge (∂µA

µ = 0). The wave equation we want to solve is 1.18, which is solved by:

Aµ(xν) =
4π

c

∫
d4x′Dret(x

ν − x′ν)jµ(x′ν) (4.1)

So using our expression for Dret above in 2.28 we can write this integral as:

Aµ(xν) =
4π

c

∫
d4x′

δ(x0 − x′0 − |x− x′|)
4π|x− x′|

jµ(x′ν)

=
1

c

∫
d3x′

jµ(x0 − |x− x′|,x′)

|x− x′|

(4.2)

This means that our scalar and vector potentials are given by:

Φ(t,x) =

∫
d3x′

ρ(t− 1
c |x− x′|,x′)

|x− x′|

A(t,x) =
1

c

∫
d3x′

J(t− 1
c |x− x′|,x′)

|x− x′|

(4.3)

� Now we consider the general setup. Consider a source of volume V , with a characteristic length a,
so the source is roughly not much bigger then a in any dimension. Then we will be interested in
the far source limit. That is when R ≡ |x− x′| >> a. For this we place the center of the source at
the origin and remind ourselves that we use x = rn̂ to denote the position of the observer and x′ as
the position of any part of the source, so that we integrate over all x′ to calculate the total impact
of the source. Note that this means |x′| < a and a << r =⇒ a

r << 1.

With these conditions we can write R as:

R =|rn̂− x′| = r|n̂− x′

r
| = r

√
(n̂− x′

r
)2

=r

√
1− 2

n̂ · x′

r
+

x′2

r2
≃ r

(
1− n̂ · x′

r
+O(

a2

r2
)

)
=⇒ 1

R
≃ 1

r
(
1− n̂·x′

r +O(a
2

r2
)
) ≃ 1

r

(
1 +

n̂ · x′

r
+O(

a2

r2
)

) (4.4)

This means our potentials can be written as:

Φ(t,x) =
1

r

∫
d3x′ρ(t− r

c
+

n̂ · x′

c
,x′) +O(

a2

r2
)

A(t,x) =
1

rc

∫
d3x′J(t− r

c
+

n̂ · x′

c
,x′) +O(

a2

r2
)

(4.5)
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We would like to taylor expand ρ and J in time derivatives, with n̂·x′

c as a small parameter, and
ideally we would like to be able to ignore this term entirely, but when can we do this? To figure
this out we can look at the taylor expansion for this small parameter:

ρ(t− r

c
+

n̂ · x′

c
,x′) ≃ ρ(t− r

c
,x′) +

n̂ · x′

c
ρ̇ (4.6)

So seeing as n̂·x′

c < a
c , we can see that we can ignore this second term when |ρ| >> a

c |
∂ρ
∂t |, so when

a
c |

1
ρ
∂ρ
∂t | << 1. If we then express ρ through the inverse Fourier transform:

ρ(t,x) =

∫
eiωtρ̃(ω,x)dω (4.7)

Then we can see that ρ̇ ∼ iωρ, so if we call the maximum frequency ωmax, then we can say that
a
c |

1
ρ
∂ρ
∂t | << 1 =⇒ a

c |ωmax| << 1, so since we can write ωmax = 2πc
λmin

, then we can say that our

condition for ignoring the n̂·x′

c term boils down to λmin >> a. The above analysis could just have
easily been done with J instead of ρ.

� Now if we consider the following:

∂k(jkxl) = (∂kjk)xl + jl

=⇒ J(t,x) = −(∇ · J)x+ ∂k(Jkx)
(4.8)

And since by the continuity equation ∇ · J = −ρ̇, we can write the above expression of A 4.3 as:

A(t,x) ≃ 1

rc

∫
d3x′ρ̇(t− r

c
,x′)x′ +

1

rc

∫
d3x′∂′k(J(t,x

′)kx)

=
1

rc

∫
d3x′ρ̇(t− r

c
,x′)x′

(4.9)

Where we have dropped the total derivative, as it vanishes at the boundaries. The time derivative
can then be taken out of this integral and we can recognise the remaining integral as the electric
dipole moment, defined as:

d(t) ≡
∫
V
d3x′ρ(t,x′)x′ (4.10)

So our vector potential can be expressed as:

A(t,x) ≃ 1

rc
ḋ(t− r

c
) (4.11)
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� We can now go ahead and obtain some physical quantities! B = ∇ × A and remembering that
n̂ ≡ x

r :

∇×
(

1

rc
ḋ(t− r

c
)

)
= ϵijk

∂

∂xi

(
1

rc
ḋ(t− r

c
)

)
j

êk

=

[
ḋj
c

−xi
r3

+
1

rc

∂r

∂xi

∂(t− r
c )

∂r
d̈j −

ḋi
c

−xj
r3

− 1

rc

∂r

∂xj

∂(t− r
c )

∂r
d̈i

]
êk

=

[
− 1

cr3
(ḋjxi − ḋixj) +

1

rc

1

r

−1

c
(xid̈j − xj d̈i)

]
êk

= − 1

cr2
ϵijk

xi
r
ḋj êk −

1

rc2
ϵijk

xi
r
d̈j êk

= − 1

cr2
n̂× ḋ(t− r

c
)− 1

rc2
n̂× d̈(t− r

c
)

(4.12)

Where we have used ∂r
∂xi

= xi
r and ∂1/r

∂xi
= −xi

r3
, which can easily be checked from the definition of r

as r =
√
x2 + y2 + z2.

B is the sum of two terms, but which one dominates? to figure this out we can do the same ”Fourier”
trick we used earlier in 4.7, to tell us that |d̈| ∼ ω|ḋ|, and since ω = 2πc

λ , then as long as λ << r,
ω
rc2

>> 1
cr2

far from the source, thus we can ignore the first term. This leaves us with:

B = − 1

cr2
n̂× d̈(t− r

c
) (4.13)

This is referred to as the far field zone or the radiation zone.

� We can then calculate E from the fourth Maxwell equation 1.1. Which reduces to Ė = c∇×B as
far from the source the current density J is 0. By a similar calculation to 4.12, we get that:

∇×B =
1

r2c2
n̂×

(
n̂× d̈(t− r

c
)
)
+

1

rc3
n̂×

(
n̂×

...
d (t− r

c
)
)

(4.14)

Once again we can see that in the far field limit the second term here dominates so:

Ė =
1

rc2
n̂×

(
n̂×

...
d (t− r

c
)
)

=⇒ E =
1

rc2
n̂×

(
n̂× d̈(t− r

c
)
)
= −n̂×B

(4.15)

� A very impotent physical quantity, is the power radiated by a source. This is is related to the
Poynting vector, which quantifies the power flow of an electromagnetic field. This vector is given
by:

S =
c

4π
E×B =

1

4πr2c3
|n̂× d̈|2 · n̂ (4.16)
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If we let θ be the angle between the direction the dipole oscillates and the vector n̂, then we can
write:

S =
1

4πr2c3
|d̈|2 sin2(θ) · n̂ (4.17)

So the power radiated is maximum for θ = π
2 ,

3π
2 and minimised for θ = 0, π,−π. To find the total

power radiated we integrate the Poynting vector over the 2-sphere S2, i.e adding the up the power
flow in every direction.

P =

∫
S2

d2r · S(r, ϕ, θ)

=
1

4πc3
|d̈|2

∫ 2π

0
dϕ

∫ π

0
dθ sin3(θ)

(4.18)

Here our θ from before is the same as our spherical co-ords θ as we can align the Axis that way.
The θ integral here evaluates to 4

3 and the ϕ integral to 2π leaving us with:

P =
2

3c3
|d̈|2 (4.19)

This is called the non-relativistic Lamor formula.

4.1 Pole expansions

� We know that we can expand functions in terms of the spherical harmonics as they are orthogonal
and complete, the result of this for 1

|x−x′| is:

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

1

r>

(
r<
r>

)l
Ylm(θ, ϕ)Y

∗
lm(θ

′, ϕ′) (4.20)

Where r< = min(|x|, |x′|) and r> = max(|x|, |x′|). We can use this to expand our scalar potential,
which in Gaussian units is given by:

Φ(x) =

∫
ρ(x′)

|x− x′|
d3x′ (4.21)

So we can write this as follows with r< = r′ ≡ |x′|, r> = r ≡ |x|:

Φ(x) =

∫
4π

∞∑
l=0

l∑
m=−l

1

2l + 1

1

r>

(
r<
r>

)l
Ylm(θ, ϕ)Y

∗
lm(θ

′, ϕ′)ρ(x′)d3x′

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

[∫
r′lρ(x′)Y ∗

lm(θ
′, ϕ′)d3x

]
1

rl+1
Ylm(θ, ϕ)

(4.22)
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This factor in the square brackets we call qlm and are the electric multi-pole moments of the charge
distribution ρ. Below are a few example of the first few moments:

q00 =
q√
4π

q11 = −
√

3

8π
(dx − idy)

q10 =

√
3

4π
dz

(4.23)

Where here q is the total charge and d is the electric dipole moment as defined above 4.10. If we
also define the symmetric, traceless tensor of quadruple moments Qij for i, j = 1, 2, 3:

Qij =

∫
(3x′ix

′
j − r′2δij)ρ(x

′)d3x′ (4.24)

Then we can express more elements of qlm:

q22 =
1

12

√
15

4π
(Q11 − 2iQ12 −Q22)

q21 = −1

3

√
15

4π
(Q13 − iQ23)

q20 =
1

2

√
5

4π
Q33

(4.25)

With all this we can write out the expansion for the scalar potential for the first few terms:

Φ(x) ≃ q

r
+

d · x
r3

+
1

2

3∑
i,j

Qij
xixj
r5

(4.26)

4.2 Pole expansion of vector potential

� If we take the expression for A(t,x) we have in 4.2, and expanding the 1
|x−x′| and argument of J in

powers of n̂·x′

c . The expansion of J, looks exactly like the expansion of ρ in 4.6, and the expansion
of 1

|x−x′| is given by 4.4. All of this leaves us with:

A(t,x) =
1

rc

∫
d3x′

(
1 +

n̂ · x’
r

)(
J(t− r

c
,x′) +

n̂ · x′

c

∂

∂t
J(t− r

c
,x′)

)
(4.27)

We can see that if we keep terms of order O( a
λmin

), but not O(ar ), then we lose the second term in

the first brackets but keep everything else as a
c |

1
J
∂J
∂t | ≃

a
λmin

and n̂·x’
r ≤ a

r . Then writing n̂·x′

c as x·x′

rc ,
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we have:

A(t,x) =
1

rc

∫
d3x′

(
J(t− r

c
,x′) +

x · x′

rc

∂

∂t
J(t− r

c
,x′)

)
= AED(t,x) +

1

rc2

∫
d3x′J̇(t− r

c
,x′)n̂ · x′

(4.28)

Where the first term here can be recognised as the vector potential due to the electric dipole moment,
which we expressed in 4.11.

� We would then like to find a form for this second term. To do this we first consider the following
quantity T :

Tik ≡
3∑
l=1

∂l(jlxixk) =

3∑
l=1

[(∂kjl)xixk + jl(δli)xk + jlxi(δlk)]

=⇒ Tik = (∇ · J)xixj + Jxk + Jxi

(4.29)

We can once again recognise ∇ · J as −ρ̇ , then if we replace x with x′ and J with J̇, we get that:

T ′
ik ≡

3∑
l=1

∂l(j̇lx
′
ix

′
k) = −ρ̈x′ix′k + J̇x′k + J̇x′i (4.30)

Then we can contract this with
∑

k n̂k:

T ′
i =

3∑
l=1

∂l(j̇lx
′
i(x

′ · n̂)) = −ρ̈x′i(x′ · n̂) + J̇(x′ · n̂) + x′i(J̇ · n̂)

=⇒ J̇(x′ · n̂) = T′ + ρ̈x′(x′ · n̂)− x′(J̇ · n̂)

(4.31)

Where we have then summed over the components to get expression for vectors. Then if we consider
the triple product of the vector C ≡ n̂× (J̇× x′) = (n̂ · x′)J̇− (n̂ · J̇)x′, then we have that:

2J̇(x′ · n̂) = T′ + ρ̈x′(x · n̂) +C (4.32)

Finally we can now integrate this expression, dropping the T term as it is a total derivative:

∫
d3x′J̇(x′ · n̂) = 1

2

∫
d3x′ρ̈x′(x · n̂) + 1

2

∫
d3x′n̂× (J̇× x′) (4.33)

These two terms are due to the electric quadruple and the magnetic dipole respectively, so the total
contributions to the vector potential are:

A(t,x) = AED(t,x) +AEQ(t,x) +AMD(t,x) (4.34)
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4.3 Magnetic dipole

� The magnetic dipole moment m is defined as:

m(t) =
1

2

∫
x′ × J(t,x′)d3x′ (4.35)

So by the form of the integral in 4.33, AMD(t,x) is given by:

AMD(t,x) = − 1

rc2
n̂× ṁ(t− r

c
) (4.36)

So this means the magnetic field BMD = ∇×AMD is given by:

BMD =
1

r2c2
n̂× (n̂× ṁ) +

1

rc3
n̂× (n̂× m̈)

≃ 1

rc3
n̂× (n̂× m̈)

(4.37)

Where we have done the same sort of computation as in 4.12, and have kept the dominating term.
Once again we can then find EMd from Ė = c∇ × B. This is similar calculation to what we did
before above for the electric dipole, resulting in:

EMD =
1

rc3
n̂× m̈(t− r

c
) (4.38)

� Once again we can then calculate the Poynting vector through S = c
4πE×B , this results in:

SMD =
c

4π
|BMD|2n̂ =

1

4πr2c5
|m̈|2 sin2 θn̂ (4.39)

Which then leads us to the power radiated through 4.18, resulting in:

PMD =
2

3c5
|m̈|2 (4.40)

� This has a great use when we look at pulsars! As the pulsar, which has a strong magnetic field
made of a large magnetic dipole moment, spins around, it looses energy in the form of radiated
energy. This loss of energy co-responds to a decrease in the kinetic energy of the star and it’s spin
slows down. This decrease in the rate of spin can be noticed in observations by looking at the times
we receive pulses and can thus also be measured, this means we can calculate how much power it
is radiating and thus by 4.40, the magnitude of its dipole moment. This can then be related to
the magnetic field as we know, from magneto-statics, the magnetic field due to a magnetic dipole.
This is extremely cool! The fact that despite being millions of millions miles away from this pulsar,
we can still calculate the magnetic field, just from our knowledge of electromagnetism. Putting in
typical numbers for this we arrive at a magnetic field with magnitude of ∼ 108T, very large!
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4.4 Electric quadrupole

� We will once again give the above treatment of calculating the magnetic and electric fields due to the
electric quadrupole moment. The quadrupole tensor (3 by 3 matrix) is given by 4.24, it is traceless
and symmetric, so it has 5 independent components. We can then look at the form of AEQ(t,x) as
given by the first term on the RHS of 4.33. We can re-write this term as:

AEQ(t,x)k =
1

2rc2

∑
i

∫
d3x′x′kxiniρ̈

=
1

6rc2

∑
i

ni

∫
d3x′

(
3x′kxi − r′2δij + r2δij

)
ρ̈

=
1

6rc2

∑
i

ni[Q̈ki + nk

∫
d3x′r′2ρ̈]

(4.41)

The only part of the second term that depends on x is nk = xk
r , then if we go to calculate the

magnetic field due to this scalar potential
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