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“Thermodynamics is a funny subject. The first time you go through it, you
don’t understand it at all. The second time you go through it, you think you

understand it, except for one or two small points. The third time you go through
it, you know you don’t understand it, but by that time you are so used to it, it

doesn’t bother you anymore.”

-Arnold Sommerfield
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Statistical Physics II 1 Quantum statistical Physics

1 Quantum statistical Physics

1.1 Ensembles

• As discussed in Stat-phys I, there are three types of ensembles we are concerned with.

1.1.1 Microcanonical

• This is for completely isolated systems. Here we have that S, V,Ni are conserved. The main
thermodynamic function is E = E(S, V,N).

1.1.2 Canonical

• Now the system is in a heat bath and is allowed to exchange energy with the surroundings. Here
we have that T, V,Ni are conserved. The main thermodynamic function is F = F (T, V,N).

1.1.3 Grand-Canonical

• Now the system is in a heat and particle bath and is allowed to exchange energy and particles with
the surroundings. Here we have that T, µi are conserved. The main thermodynamic function is
J = J (T, V, µi).

• In the thermodynamic limit, the physics at equilibrium can be effectively described by all ensembles
with the understanding that

– In Microcanonical ensemble total energy Ẽ and number of particles Ñ are constant.

– In the Canonical ensemble, the average energy ⟨E⟩ ∼= Ẽ ∼= E∗, the most probable energy.

– In the Grand Canonical ensemble, the average energy ⟨E⟩ ∼= Ẽ ∼= E∗, as well as ⟨N⟩ ∼= Ñ ∼= N∗.

• In the quantum regime ℏ ̸= 0, so the phase space is no longer the appropriate approach. Instead we
deal with a mostly discrete system.

1.2 Discrete systems

1.2.1 Microcanonical ensemble

• Here the relevant function for relating micro-to-macro state is the number of microstates Ω . This
is related to the entropy of the system via S = k ln(Ω). And the probability of any one state is just
Pr = 1/Ω. It is easier to write down the form of Ω in a discrete system as we can just say:

Ω =
∑
{n}

δEn,Ẽ (1.1)

This is just the Kronecker delta function I.e we count a one for each possible way the total energy
of the system can be made up of the quantum states available. This means we sum over not
only all particles in the system but also each possible quantum number they could have. {n} =
{n1, n2, ..., nN} and each particle can take energies ni = 0, 1, 2, .... where i = 1, 2, ..., N .
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Statistical Physics II 1 Quantum statistical Physics

1.2.2 Canonical ensemble

• Here the relevant function for relating micro-to-macro state is the Canonical partition function
Z(T, V,N), related to the Helmholtz free energy by F = −kT ln(Z). The probability distribution
is given by Pn(E) = 1

Z e
−βEn . The partition function is given by:

Z =
∑
{n}

e−βEn
(1.2)

This just comes from Normalizing the probability distribution over all possible states of the total
system.

1.2.3 Grand -Canonical ensemble

• Similar to the microcanonical ensemble. Instead of the partition function we hyave the grand-
canonical partition function Ξ. This is related to the grand canonical potential via J = −kT ln(Ξ).
The probability distribution is Pn = 1

Ξe
β(µN−E), and the grand canonical potential takes the form:

Ξ =

∞∑
N=0

eβµNZ (1.3)

1.3 Density Matrix

• Since we are dealing with quantum mechanical systems, when we talk about something like the
partition function, it may be more proper to talk about ⟨Z⟩ = ⟨n|Z |n⟩, the expected value of the
partition function. Here ⟨n|m⟩ = δn,m, |n⟩ are just energy eigenstates. Looking at the form of Z
we see:

⟨Z⟩ =
∑
{n}

⟨n| e−βEn |n⟩ =
∑
{n}

⟨n| e−βĤ |n⟩ (1.4)

Where Ĥ here is the Hamiltonian. This then means that Z = Tr(e−βĤ) and the probability Pn

becomes:

ρ =
1

Z
e−βĤ (1.5)

This matrix ρ is what we call the Density matrix or Thermal density operator.

1.4 Average quantities

• We know how to calculate average quantities, by using the probability distribution, here we will use
this to calculate neat expression for the average energy and average particle number in the grand
canonical ensemble. First up average particle number:

⟨N⟩ = 1

Ξ

∞∑
N=0

∑
i

Neβ(Nu−Ei) =
1

Ξ

∞∑
N=0

∑
i

NzNe−βEi (1.6)
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Statistical Physics II 1 Quantum statistical Physics

Where z = eβµ is known as the fugacity. Then:

⟨N⟩ = z

Ξ

∂

∂z

∞∑
N=0

∑
i

zNe−βEi (1.7)

But since whats right of the is just the definition of the grand canonical partition function:

⟨N⟩ = z

Ξ

∂Ξ

∂z
= z

ln Ξ

∂z
(1.8)

• Similarly the average energy is given by:

⟨E⟩ = 1

Ξ

∞∑
N=0

∑
i

Eie
β(Nu−Ei) = − 1

Ξ

∂

∂β

∞∑
N=0

∑
i

eβ(Nu−Ei) +
1

Ξ

∞∑
N=0

∑
i

Nµeβ(Nu−Ei) (1.9)

But this last term is just µ times the average particle number so we can write the average energy
as:

⟨E⟩ = ⟨N⟩µ− ∂ ln Ξ

∂β
(1.10)

• Alternatively, we could hold the fugacity z = eβµ, constant while we take our beta derivative, this
way we avoid having extra terms:

⟨E⟩ = 1

Ξ

∞∑
N=0

∑
i

Eie
β(Nu−Ei) = − 1

Ξ

(
∂

∂β

∞∑
N=0

∑
i

zNe−βEi

)
z

= −
(
∂ ln Ξ

∂β

)
z

(1.11)
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Statistical Physics II 2 Harmonic Oscillator

2 Harmonic Oscillator

• We now look at an example, as turns out one of the only systems we can solve analytically solve.
Consider N 1D oscillators each with an energy ϵi = ℏω(ni +

1
2), ni = 0, 1, 2, .... We can then write

the total energy as:

Ẽ =

N∑
i=1

(ni +
1

2
)ℏω =

N

2
ℏω + ℏω

N∑
i=1

ni (2.1)

We then set M ≡
∑N

i=1 ni =
(

Ẽ
ℏω − N

2

)
, which is fixed as we are considering microcanonical/Canon-

ical ensemble. M is a positive integer.

2.1 Canonical ensemble

• Now we look at calculating the partition function Z(T, V,N), as per equation 1.2 :

Z =
∑
n

e−β
∑N

i=1 ϵ(ni) =
N∏
i=1

(∑
ni

e−βϵ(ni)

)
(2.2)

Then since we have a system of identical particles we know we can write the partition function as a
product of all the individual identical partition functions associated to a single particle, ζ(T, V, 1).
So Z = ζN . We can write ζ as:

ζ =
∞∑
n=0

e−βℏω(n+ 1
2
) = e−

1
2
βℏω

∞∑
n=0

(e−βℏω)n = e−
1
2
βℏω

(
1

1− e−βℏω

)
(2.3)

So we can write Z as:

Z =
e−

1
2
βℏωN

(1− e−βℏω)N
=

[
2 sinh(

βℏω
2

)

]−N

(2.4)

If the oscillators are not distinct, i.e. ωi ̸= ω, then Z becomes:

Z =
N∏
i=1

e−
1
2
βℏω

1− e−βℏω =
N∏
i=1

1

2 sinh(βℏωi

2 )
(2.5)

2.2 Micro-Canonical ensemble

• We now consider how we can go about calculating Ω. As per 1.1 we know Ω must take the following
form for the Harmonic oscillator:

Ω(E, V,N) =
∑
n

δ∑N
i=1 ni,M (2.6)
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Statistical Physics II 2 Harmonic Oscillator

Where M =
(

Ẽ
ℏω − N

2

)
. This problem is the same as trying to find how many ways we can distribute

M objects (the total sum of all the quantum numbers) into N boxes, the number of particles. Here
we can just use the stars and bars method, so this becomes equivalent to the number of ways we
can place (N − 1) bars in M + N − 1 positions. This then means that Ω must take the following
form:

Ω =
(M +N − 1)!

M !(N − 1)!
(2.7)

• Now we want to see if we can obtain the same result from examining the previously calculated Z.
As we did in 2.2 we can write:

Z =
∑
n

e−β
∑N

i=1 ϵ(ni) = e−
1
2
βℏωN

∑
n

e−βℏω
∑N

i=1 ni

(2.8)

But since
∑N

i=1 ni is just M and {n} = {n1, n2, ..., nN}, we can write this as:

Z = e−
1
2
βℏωN

∞∑
M

e−βℏωM
∑
n

δ∑N
i=1 ni,M (2.9)

The second sum here is the constraint on this sum. We have made this jump as summing over all
the quantum numbers of all the particles is the same as summing over all the possible total sums
that the quantum numbers could have, with the constraint that M must be the sum of N quantum
numbers. This constraint can then be recognised as Ω, we can then also relate this expression to
the previously derived expression 2.4. We can then let x = e−βℏω to write 2.9 as:

xN

(1− x)N
= xN

∞∑
M=0

xMΩ

=⇒ 1

(1− x)N
=

∞∑
M=0

xMΩ

(2.10)

Now this looks familiar it is like a taylor expansion, so Ω must be the co-officiants of this expansion.
This means we can write:

Ω(M) =
1

M !

dM

dxM
(1− x)−N

∣∣∣∣
x=0

(2.11)

To save us some hastle we can ask mathematica to evaluate this, this results in an expression in
terms of something called factorial power, which is just another way of of writing the expression we
derived above 2.7 as needed.
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2.3 Vibrational mode of a solid

• We now look at the non-identical oscillators and see if we can derive expressions for measurable
quantities that match with observational results. First we wish to calculate the energy of the
system Ẽ , which for this system is:

Ẽ = V0 +
3N∑
i=1

(ni +
1

2
)ℏωi (2.12)

We have established that the total energy Ẽ is the same as the average energy ⟨E⟩ = −∂ ln(Z)
∂β , so

using our expression 2.5 we can write:

Z = e−βV0

3N∏
i=1

e−
1
2
βℏωi

1− e−βℏωi

=⇒ ln(Z) = −βV0 −
3N∑
i=1

βℏωi

2
−

3N∑
i=1

ln(1− e−βℏωi)

=⇒ ⟨E⟩ =V0 +
3N∑
i=1

ℏωi

2
+

3N∑
i=1

ℏωi

(eβℏωi − 1)

(2.13)

These first few terms have no dependence on the temperature T as β = 1/kT . So if we want to
calculate the heat capacity CV = ∂E

∂T we only have to worry about the last term, this turns out to
be:

CV = k

3N∑
i=1

(βℏωi)
2eβℏωi

(eβℏωi − 1)2
(2.14)

• Einstein in 1907 was analysing these systems and set the frequencies to the same ωi = ωE , then we
set x = βℏωE , so we can write:

CV =
3Nkx2ex

(ex − 1)2
= 3Nk

(
θE
T

)2 e
θE
T

(e
θE
T − 1)2

(2.15)

Where θE = ℏωE
k . Taylor expanding this equation for x = βℏωE << 1 =⇒ kT >> ℏωE , i.e the

high temperature limit. We return the classical result CV = 3Nk as ex ≈ 1 + x and x << 1 so:

CV ≈ 3NKx2
1 + x

x2
≈ 3Nk (2.16)

In the low temperature limit kt << ℏωE =⇒ T << θE , so we have that e
θE
T >> 1 so:

CV ≈ 3Nk

(
θE
T

)2

e−
θE
T (2.17)
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However experiments indicated a universal behaviour of CV ∼ T 3, so something else is needed to
fix this.

2.4 Debye frequency

• Enter Debye, If we work backwards, CV ∼ T 3 (as T → 0 =⇒ β → ∞) implies ⟨E⟩ ∼ T 4 =⇒
ln(Z) ∼ − 1

β3 . If we look back at the middle equation 2.13 we see that the last term is the one that

contributes to the heat capacity. However, if we take the limit limβ→∞ ln(1− e−βℏωi) = 0. The way
to fix this is to notice that if the frequencies ωi are very small then they can make it so that even
for large β, βωi can remain finite making e−βℏωi not go to 0.

This is what Debye came up with, using the fact that only the low frequencies contribute to the
measurable heat capacity, he set an upper bound on the frequencies called the Debye frequency ωD.
We ignore any ω > ωD. The physics to explain this can be found by examining a lattice. Here, the
Debye frequency is ωD ∼ 1

a , where a is the inter atomic distance. Suppose we have a wavelength λ
associated with a frequency ω st λ < a, then this wave cannot propagate through the lattice points.
So assuming a constant propagation speed for all waves λ ∝ 1

ω implies we cant have any larger
frequencies then ωD.

2.5 Density of frequencies

• We would like to know how these frequencies are distributed so that we may attempt to calculate
the heat capacity. For this we need the density of frequencies. This is g(ω) defined as the following:

g(ω) =

3N∑
i=1

δ(ω − ωi) (2.18)

Here ωi are the discrete allowed frequencies of the lattice. We can notice that g(ω) is a continuous
function (we say there are g(ω)dω frequencies between ω and ω + dω). Despite this we know we
cannot have infinite frequencies, so this density must be normalised in some way. For this we can
use the fact that we know the number of frequencies we have must be equal to the number of degrees
of freedom of the system. To normalise we would usually integrate g(ω) from 0 to ∞ and set the
result = 3N . But, we must remember that we don’t care a bout ω > ωD, so the upper bound can
just be ωD. This looks like the following:

∫ ωD

0
g(ω)dω = 3N (2.19)

• We can construct an argument that will help us determine g(ω) using this normalisation condition.
Consider two solids of the same volume V , one has an inter atomic distance a and N particles, the
other has a′ = a

l so to have the same volume the number of particles must be scaled to N ′ = l3N ,
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as V ∼ Na3. Since ωD ∼ 1
a =⇒ ω′

D = lω′
D. We can then see that for the second system we have:

∫ lωD

0
g(ω)dω = 3Nl3

=⇒
∫ ω0

0
g(ω̃l)ldω̃ = 3Nl3, ω = lω̃

=⇒
∫ ω0

0
g(ω̃l)dω̃ = 3Nl2

=⇒
∫ ω0

0
g(ω̃l)dω̃ = l2

∫ ωD

0
g(ω)dω

(2.20)

Where in the last step we are comparing to the first system where 3N =
∫ ωD

0 g(ω)dω. This tells
us that g(ω) is a homogeneous degree 2 function! (g(lω) = l2g(ω)). Then by Euler’s theorem since
this a single variable function g(ω) = Aω2. We can find A by subbing this into 2.19, resulting in
A = 9N

ω3
D
. In summery g(ω) can be written as:

g(ω) =

{
9N
ω3
D
ω2, ω < ωD

0, ω > ωD

(2.21)

2.6 General density of states

• The definition of a density of states, we have had before was the sum of a delta functions of the
energy levels, as well as for the density of frequencies in 2.18. This cant really be extended to
something like momentum, where we know momentum is not quantised. the natural solution to
this is to replace this with an integral. This then means we can interpret W (p)dp as the number of
microstates with momentum lying between p and p+ dp.

But we can remember there are other ways of expressing the number of microstates. We can also
write:

Ω = g

∫
d3pd3q

h3
(2.22)

Where g here is the degeneracy factor. Integrating over the spacial co-ords d3q just gives us the
volume V and we can separate out the angle terms of the momentum giving us a factor of 4π. If
we then restrict this to microstates with momentum less than or equal to P , we get that

Ω(P ) =
4πgV

h3

∫ ∞

0
p2dp =

4πgV

3h3
P 3 (2.23)

To find the density of microstates we simply differentiate with respect to P and evaluate this at any
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general momentum p, so W (p)dp is given by:

W (p)dp =
d

dP

(
4πgV

3h3
P 3

) ∣∣∣∣
P=p

dp

=⇒ W (p)dp =
4πgV

h3
p2dp

(2.24)

2.7 Debye Heat Capacity

• Now we can go about calculating the heat capacity using the above density of frequencies g(ω), to
do this we first calculate ln(Z), using what we had in 2.13, we can re-write this in terms of the
density of frequencies.

ln(Z) = −βV0 −
3N∑
i=1

βℏωi

2
−

3N∑
i=1

ln(1− e−βℏωi)

= −βV0 −
βℏ
2

∫ ωD

0
ωg(ω)dω −

∫ ωD

0
g(ω) ln(1− e−βℏωi)dω

(2.25)

We can write this as our definition of g(ω) 2.19, reduces the last equation to what we started with.
We can then compute the average energy and the heat capacity as before:

⟨E⟩ =V0 +
ℏ
2

∫ ωD

0
ωg(ω)dω +

∫ ωD

0

Aω2ℏeβℏω

eβℏω − 1

=⇒ Cv = k

∫ ωd

0
dω(Aω2)

(βℏω)2

(eβℏω − 1)2
eβℏω

=
9N

kω3
D

(
kT

ℏ

)3 ∫ xD

0
dx

x4ex

(ex − 1)2
, x = βℏω

=9Nk

(
T

θD

)3 ∫ θD
T

0
dx

x4ex

(ex − 1)2
, θD =

ℏωD

k

(2.26)

Here θD is the Debye temperature, i.e. the temperature of the highest frequency as kT ∼ E = ℏω.

• The remaining task is to calculate this integral, For this we need to consider some sort of limit as
getting an an analytic result with limits is difficult. First we consider the low temperature limit,
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that is T << θD =⇒ θD
T → ∞.

I =

∫ ∞

0
dx

x4ex

(ex − 1)2
=

∫ ∞

0
dx

x4e−x

(1− e−x)2

=

∫ ∞

0
dxx4

d

dx

(
−1

1− e−x

)
= −

∫ ∞

0
dxx4

d

dx

( ∞∑
k=0

e−kx

)

=

∫ ∞

0
dx

∞∑
k=1

ke−kxx4 =
∞∑
k=1

k

∫ ∞

0
x4e−kxdx

=
∞∑
k=1

k

∫ ∞

0

u4

k4
e−udu

k
, u = kx

=
∞∑
k=1

1

k4

∫ ∞

0
u4e−udu = ζ(4)Γ(5) =

4π4

15

(2.27)

This means we can write the heat capacity as:

Cv ≃ 12Nkπ4

5

(
T

θD

)3

(2.28)

This is the required behaviour at low temperatures.

• In the high temperature limit T >> θD:

Cv ≃9Nk

(
T

θD

)3 ∫ θD
T

0
dx

x4(1 + x+ · · ·))
(1 + x+ · · · − 1)2

=9Nk

(
T

θD

)3 ∫ θD
T

0
dx

x4

x2
= 3Nk

(2.29)

The Dulong–Petit law as needed.
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3 Theory of ideal subsystems of identical particles

• We consider a system of N particles in thermal and diffusive contact with a reservoir. A single
particle can take energies ϵ0 ≤ ϵ1 ≤ .... At any such energy ϵi there are ni particles. We call this
the occupation number. The total number of particles can then be expressed as N =

∑∞
i=1 ni, and

the total energy as E =
∑∞

i=0 niϵi. If we want to study this system with the canonical ensemble, it
is a little difficult as the partition function takes the form:

Z =
∑
{ni}

e−β
∑

i niϵiδ∑
i ni,N (3.1)

This is hard to deal with, but we can make it easier if we deal with the Grand canonical ensemble:

Ξ(T, V, µ) =
∞∑

N=0

eβµNZ =
∞∑

N=0

eβµN
∑
{ni}

e−β
∑

i niϵiδ∑
i ni,N

=
∑
{ni}

eβµ
∑

i nieβ
∑

i niϵi =
∑
{ni}

eβ
∑

i ni(µ−ϵi)

=⇒ Ξ =
∑
{ni}

eβ
∑

i ni(µ−ϵi) =

(∑
n0

eβn0(µ−ϵi)

)(∑
n1

eβn1(µ−ϵi)

)
· ··

=⇒ Ξ(T, V, µ) =
∏
i

(∑
ni

eβni(µ−ϵi)

)
=
∏
i

ξi

(3.2)

Here ξi is the partition function for particles occupying the ith level.

3.1 Bose-Einstein and Fermi-Dirac statistics

• If any number of particles can occupy a single state ni = 0, 1, 2, ..., the particles follow Bose-Einstein
statistics (and have integer spin). These particles are called Bosons.

If a single level can be occupied by at most one particle, so ni = 0, 1. Then the particles follow Fermi-
Dirac statistics (and have half integer spin). These particles are called Fermions these conditions
the individual partition functions take the form:

ξi =


∑
ni

eβni(µ−ϵi) =
1

1− eβ(µ−ϵi)
, Bosons∑

ni

eβni(µ−ϵi) = 1 + eβ(µ−ϵi), Fermions
(3.3)

We must note that in the case of Bosons, we are restricted to having µ < ϵ, otherwise we cannot
sum the geometric series.

• The full partition functions can then be written as one with a plus denoted for Fermions and a
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minus for Bosons:

Ξ± =
∏
i

(1± ze−βϵi)±1
(3.4)

Here z = eβµ , and is called the fugacity. Naturally we want to find ⟨ni⟩ the average number of

particles in the ith level, this then means ⟨N⟩ =
∑

i ⟨ni⟩ = −
(
∂ ln(Ξ)
∂µ

)
= z ∂ ln(Ξ)

∂z . So we can write

⟨ni⟩ = z ∂ ln(ζi)
∂z , so computing this we see:

⟨ni⟩ = z
∂ ln((1± ze−βϵi)±)

∂z
=

±ze−βϵi

(1± ze−βϵi)
=

1
eβϵi
z ± 1

=⇒ ⟨ni⟩ =
1

eβ(ϵi−µ) ± 1

(3.5)

3.2 Non-relativistic Bosonic gas

• We consider a bosonic gas enclosed in a volume V . The possible energy levels are then:

ϵi =
ℏ2i2

2mL2
, i = 0,±1,±2, ... (3.6)

Here L is the characteristic length and has L3 ∼ V . We can also note that the energy is always
positive and we must have that µ ≤ ϵ =⇒ µ ≤ 0. If we look at the ground state occupation
number we see ⟨n0⟩ = z

1−z , so we must have that 0 < z < 1. We can then write down the log of the
partition function of the system using 3.4:

ln(Ξ) = −
∑
i

ln(1− ze−βϵi) (3.7)

And in the same manner as we did in the section on the Debye model, we can write the sum over
specific energy levels ϵi as the integral with the density of states W (ϵ) defined as W (ϵ) =

∑
i δ(ϵ−ϵi).

This means we can write:

ln(Ξ) = −
∫ ∞

0
dϵW (ϵ) ln(1− ze−βϵ) (3.8)

• Then from the definition of W (ϵ) we can separate it out and write it as:

W (ϵ) =
∑
i

δ(ϵ− ϵi) = δ(ϵ) +
∑
i ̸=0

δ(ϵ− ϵi)

=δ(ϵ) +
∑
i ̸=0

δ(ϵ− ℏ2i2

2mL2
)

(3.9)

- 15 -



Statistical Physics II 3 Theory of ideal subsystems of identical particles

For large L (large with respect to ℏ), we have that this sum can be approximated by the integral
as long as we account for the degeneracy of energy states, i.e. the number of different ways each
energy level can be reached. This degeneracy factor turns out to be g = 2s+ 1, which depends on
the Bosonic system, s here is the spin of the specific Bosons, this is related to the number of possible
different z-angular momenta, m, which is 2l + 1. W (ϵ), can then be written as:

W (ϵ) ≈ δ(ϵ) + g

∫ ∞

0
d3iδ(ϵ− ℏ2i2

2mL2
) (3.10)

Then since momentum p is related to the wave vector k by p = ℏk, and kα = 2πiα
L =⇒ pα = hiα

L .
So changing co-ords to momentum:

W (ϵ) ≈ δ(ϵ) +
gV

h3

∫ ∞

0
d3pδ(ϵ− p2

2m
) (3.11)

The V here comes from using L3 ∼ V . We can then use d3p = p2dpdΩ and the no angle dependence

to pick up a factor of (4π). Then setting t = p2

2m , so dt = pdp
m = 1

m (2mt)1/2 dp , we get the following:

W (ϵ) ≈δ(ϵ) +
gV (4π)m(2m)1/2

h3

∫ ∞

0
t1/2δ(ϵ− t)dt

=δ(ϵ) +
gV (2π)(2m)3/2

h3
ϵ1/2

(3.12)

• Now we go back to computing ln(Ξ):

ln(Ξ) =−
∫ ∞

{−ε,ε<<1}
dϵδ(ϵ) ln(1− ze−βϵ)−

∫ ∞

0
dϵW (ϵ) ln(1− ze−βϵ)

=− ln(1− z)− gV (2π)(2m)3/2

h3

∫ ∞

0
dϵϵ1/2 ln(1− ze−βϵ)

(3.13)

Focusing on solving this integral, we can see through taylor expansion that we can write it in the
following way:

I =

∫ ∞

0
dϵϵ1/2 ln(1− ze−βϵ) =

∫ ∞

0
dϵϵ1/2

∞∑
l=1

(−1)(ze−βϵ)l

l

=
∞∑
l=1

(−1)(z)l

l

∫ ∞

0
dϵϵ1/2e−lβϵ =

∞∑
l=1

(−1)(z)l

l2
1

β

1

(βl1/2)

∫ ∞

0
t1/2e−tdt, t = lβϵ

(3.14)

The integral here can just be recognised as Γ(32) =
√
π
2 so we are left with:

I = −
√
πβ−3/2

2

∞∑
l=1

zl

l5/2
(3.15)
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3.2.1 Poly-Logarithms

• This function is called a poly-logarithm Li5/2(z) =
∑∞

l=1
zl

l5/2
. More generally:

Lir(x) =
∞∑
l=1

xl

lr
(3.16)

And these functions have the property that:

x
d

dx
Lir(x) = Lir−1(x) (3.17)

They also have a integral representation for x ∈ C:

Lir(x) =
1

Γ(r)

∫ ∞

0

tr−1

et

x − 1
dt (3.18)

It can be shown that we can integrate by parts our integral in 3.14 and arrive at this integral
representation of the poly logarithm.

• It can also be shown that:

Lir(1) = ζ(r) (3.19)

Which we can notice diverges for 0 ≤ r ≤ 1.

• Returning to the problem at hand we can now write down our partition function as follows:

ln(Ξ) = − ln(1− z) + gV

(
2πm

βh2

)3/2

Li5/2(z) (3.20)

3.3 Bose-Einstein Condensation

• We would then like to know the average particle number ⟨N⟩ for this system, to calculate this we
can use our expression from 1.8 so that:

⟨N⟩ = z

1− z
+ gV

(
2πm

βh2

)3/2

Li3/2(z) (3.21)

The first term here must be the number of particles in the ground state ⟨n0⟩, as this term comes
from the δ(ϵ) we had in our density of states function, corresponding to the state with 0 energy. This
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then means that the latter term is the average number of particles in excited state ⟨Nex⟩. Writing
this out:

⟨n0⟩ =
z

1− z

⟨Nex⟩ = gV

(
2πm

βh2

)3/2

Li3/2(z)

(3.22)

• Next we would like to know the average energy of the system. Using 1.10 :

⟨E⟩ = µ ⟨N⟩− ∂

∂β
(− ln(1− z)) + gV

(
2πm

βh2

)3/2 ∂

∂β

(
Li5/2(z)

)
− gV

(
2πm

h2

)3/2

Li5/2(z)(−
3

2β5/3
)

= µ ⟨N⟩ − µz
∂ ln Ξ

∂z
− gV

(
2πm

h2

)3/2

Li5/2(z)(−
3

2β5/3
)

(3.23)

Here we have used ∂
∂β = µz ∂

∂z , so that the first term and the second and third terms can be
recognised as the same, so they cancel out leaving us with just the last term. What we have done
here seems extremely counter intuitive, when taking the derivative with respect to z we consider β
to not be a function of z, but when taking the derivative with respect to β we do consider z as a
function of β. This is rather silly, but the reason is, β is well defined with out z as β = zβµ, but z
is only defined as a function of β.

⟨E⟩ = 3

2β
gV

(
2πm

h2β

)3/2

Li5/2(z) (3.24)

• Now if we briefly consider changing to the canonical ensemble. Here we now have a fixed number
of particles N . Looking at the above expression for Nex 3.22, since poly-logs are monotonic and
0 < z ≤ 1, this means Nex is bounded for finite temperature.

• But what happens if we have more particles in the system then this limiting value? then it is natural
that the number of excited states will be at this maximum while, the rest will be pushed en mass
in to the ground state, who’s capacity is essentially unlimited (as z goes to 1, z

1−z goes to infinity).
The point at which this starts to happen is the critical temperature Tc, and is when z ≃ 1 and
Nex ≃ N , this then means from 3.21 we have that:

Tc =
h2

2πmk

(
N

V gLi3/2(1)

)2/3

(3.25)
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3.3.1 Low temperature limit

• When T << Tc we have that a substantial number of particles sit in the ground state, in this case
we see by inverting the expression ⟨n0⟩ in 3.22 that:

z =
⟨n0⟩

1 + ⟨n0⟩
=

1

1 + 1
⟨n0⟩

≈ 1− 1

⟨n0⟩ (3.26)

So since ⟨n0⟩ is large z ≃ 1 is consistent. We can also re-write our expression for Nex in terms of
the critical temperature Tc, this takes the form:

Nex = N

(
T

Tc

)3/2 Li3/2(z)

Li3/2(1)
≈ N

(
T

Tc

)3/2

(3.27)

Which as expected is very small for T << Tc. This also implies that ⟨n0⟩ ≈ N(1− ( T
Tc
)3/2)

3.3.2 High temperature limit

• In the classical regime T >> Tc, z << 1 we have that Li5/2(z) ≈ z, this can be seen by looking at
the taylor expansion. This means that the number of excited particles as per the first part of 3.27
is:

Nex ≈ N

(
T

Tc

)3/2

z (3.28)

But we must also have that Nex ≈ N , due to most particles being excited, =⇒ z ≈
(
Tc
T

)3/2
so

z << 1 as needed.

3.3.3 Pressure of Bose-Einstein gas

• One way of writing the grand Canonical potential is J = −PV = −kT ln Ξ, so using our expression
for the partition function 3.20:

PV =
1

β

(
− ln(1− z) + gV

(
2πm

βh2

)3/2

Li5/2(z)

)
=

2

3
⟨E⟩ − kT ln(1− z)

(3.29)

Where we have used our expression for the average energy 3.24 . What can then be noticed is that
for T >> Tc, z << 1 and T << Tc, the temperature is generally small, so this second term can
nearly always be neglected, leaving us with:

P =
2 ⟨E⟩
3V

(3.30)
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3.3.4 Energy distribution

• We would also like to know the average number of particles with in energies {ϵ, ϵ+ dϵ}, to compare
to classical mechanics. In order to compare to classical mechanics we can ignore the ground state
as it barley contributes. Since d ⟨N⟩ = ⟨n(ϵ)⟩Wc(1, ϵ)dϵ and

∫
d ⟨N⟩ = Nex is given by 3.21, This

implies that:

p(ϵ)dϵ =
⟨n(ϵ)⟩
Nex

Wc(1, ϵ)dϵ =
⟨n(ϵ)⟩
Li3/2(z)

2√
π
ϵ1/2β3/2dϵ (3.31)

Where we have used the fact that Wc(1, ϵ) is given by 3.12, ignoring the ground state as that
corresponds to ϵ = 0. This should in the classical limit look like the Maxwell Boltzmann distribution.
Which we can see is the case as in the classical limit ⟨n(ϵ)⟩ ≃ ze−βϵand Lir(z) ≃ z, so we have:

p(ϵ)dϵ = e−βϵ 2√
π
ϵ1/2β3/2dϵ (3.32)

As needed

3.3.5 Heat Capacity

• And of course we couldn’t analyze a gas if we didn’t look at its heat capacity! But how do we
compute the heat capacity if we usually keep N constant? Well lets keep N constant and see if we
get the expected classical result CV = 3/2NK in the classical limit. For fixed N we know the heat
capacity is just the derivative of the average energy, wrt T . So using the expression in 3.24 , and
using the T >> Tc approximations so that Li5/2(z) ≃ z, we have that:

CV =
3

2
gV

(
2πmkT

h2

)3/2
[
5

2
kz + kT

(
∂z

∂T

)
V,N

]
(3.33)

Since we have fixed N , computing
(
∂z
∂T

)
V,N

is not trivial as it was before. Instead what we can do

now is impose the condition that ∂N
∂T = 0, so applying this to 3.21, with N ≃ N and Li3/2(z) ≃ z

we get:

0 = gV

(
2πmk

h2

)3/2
[
3

2
T1/2z + T3/2

(
∂z

∂T

)
V,N

]

=⇒
(
∂z

∂T

)
V,N

≃ − 3z

2T

(3.34)

We can then plug this into our above expression for the heat capacity 3.33:

CV =
3

2
gV

(
2πmkT

h2

)3/2

[kz]

=⇒ CV =
3

2
Nk

(3.35)
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Here we have used the fact that N takes the form 3.21. This has all been in the classical limit, but
we would also like to know the behaviour of the heat capacity at T ∼ Tc and T << Tc. In this
region we can write the heat capacity as:

CV =
3

2
gV

(
2πmkT

h2

)3/2
[
5

2
kLi5/2(z) + kTLi3/2(z)

1

z

(
∂z

∂T

)
V,N

]
(3.36)

So once again we impose ∂N
∂T = 0:

0 = gV

(
2πmk

h2

)3/2
[
3

2
T1/2Li3/2(z) + T3/2Li1/2(z)

z

(
∂z

∂T

)
V,N

]

=⇒
(
∂z

∂T

)
V,N

≃ − 3

2T

zLi3/2(z)

Li1/2(z)

(3.37)

• We would then like to determine the the behaviour of Li1/2(z) for z close to 1, (Li1/2(1) diverges as
per 3.19). To do this we look at the integral form 3.18. Here, when z → 1, the integral diverges for
t << 1. So we re-write the integral as follows:

Li1/2(z) =
1

Γ(1/2)

(∫ ϵ

0

t−1/2

et

z − 1
dt +

∫ ∞

ϵ

t−1/2

et

z − 1
dt

)
(3.38)

The second term here is finite so we will just call it a constant A. The first term can then be
re-written, as t << 1 and ϵ << 1:

Li1/2(z) =
1

Γ(1/2)

∫ ϵ

0

t−1/2

z−1(t+ 1)− 1
dt+A

=
z

Γ(1/2)

∫ ϵ

0

t−1/2

(1− z) + t
dt+A

(3.39)

So if we let U =
(

t
1−z

)1/2
, then:

Li1/2(z) =
2z

(1− z)1/2Γ(1/2)

∫ ϵ

0

du

1 + u2
+A (3.40)

This integral can then be recognised as arctan(ϵ) (as arctan(0) = 0), so we can say in the limit as
z → 1, Li1/2(z) behaves like:

Li1/2(z) ∝ z(1− z)−1/2 (3.41)
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• Returning to our expression for
(
∂z
∂T

)
in 3.37,

(
∂z

∂T

)
V,N

∝ − 3

2T

zLi3/2(z)

z(1− z)−1/2
(3.42)

Then since N can be expressed as is it is in 3.20 (we are close to the critical temperature we can
ignore the ground state), we can write this as:

(
∂z

∂T

)
V,N

∝ N

T 5/2

√
1− z(T ) (3.43)

This is a differential equation with the boundary condition that z(1) = Tc, and we get the solution:

z(T ) ≃ 1− b(
T − Tc

Tc
)2 (3.44)

Where b is a constant that depends on various constants but not on N . This means we can finally
write the heat capacity from 3.36, for T → T+

c :

CV ≃ 15

4
(
Li5/2(1)

Li3/2(1)
)
T

Tc

3/2

− C

(
T − Tc

Tc

)
(3.45)

Where here C is a constant and we have used the above expression of Tc 3.25. Comparing this result
to 3.35 , we can see that CV is continuous as T → Tc.

• We can then see that
(
dCV
dT

)
is discontinuous as T → Tc. Since this derivative will naturally depend

on
(
dz
dT

)
and for T → T+

c :

z ≃ 1− b(
T − Tc

Tc
)2 (3.46)

Where as for T → T−
c :

Z = (1 +
1

⟨n0⟩
)−1 ≃

(
1 +

1

N(1− ( T
Tc
)3/2)

)−1

(3.47)

So
(
dz
dT

)
= O(1) for T > Tc and

(
dz
dT

)
= O( 1

N ) for T < Tc. This makes CV discontinuous in the
thermodynamic limit when N becomes very large.
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3.3.6 What is, and what is not BEC?

• If we consider the energy difference between the first excited state and the ground state ϵ1 − ϵ0 =
ℏ2

2mV 2/3 . Then if we have a system with thermal energy kT < ϵ1 − ϵ0, then naturally since they
do not have enough energy, all particles will sit in the ground state. This is not BEC! BEC (Bose

Einstein condensation) occurs in macroscopic large systems where ℏ2
2mV 2/3 << kT << kTc. Here

almost all particles populate the ground state even though they they have enough thermal energy
to classically not do so. It is a purely quantum mechanical phenomena.

3.4 Fermionic gases

• We start just as we did with the bosonic gas 3.6, with the energies that are obtained from the
free-particle wavefunction:

ϵi =
ℏ2i2

2mL2
, i = 0,±1,±2, ... (3.48)

And we can also write down the log of the partition function via 3.4:

ln(Ξ) =
∑
i

ln(1 + ze−βϵi) (3.49)

This time however we have that the fugacity z ∈ (0,∞). Once again we will treat this semi-classically
converting the above sum into an integral with the density states:

ln(Ξ) = ln(1 + z) +

∫ ∞

0
dϵWc(1, ϵ) ln(1 + ze−βϵ) (3.50)

Where we have already separated the ground state energy here with the first term. For a non-
relativistic gas we have that from 3.12 that Wc(1, ϵ) ∝ ϵ1/2, so we can write the second term above
in 3.50 as: ∫ ∞

0
dϵWc(1, ϵ) ln(1 + ze−βϵ) ∝

∫ ∞

0
dϵϵ1/2 ln(1 + ze−βϵ) (3.51)

We will call this integral I, so that if we integrate by parts, the boundary terms make the first term
vanish leaving us with:

I = −2β

3

∫ ∞

0

ϵ3/2e−βϵ

1 + e−βϵ

z

dϵ (3.52)

So with the substitution x = βϵ this becomes:

I = − 2

3β3/2

∫ ∞

0

x3/2

1 + ex

z

dx (3.53)
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The integral here can then be recognised up to a factor of Γ(5/2) = 3π/4 as the poly log of −z so
Li5/2(−z) as per 3.18. This means 3.50 becomes:

ln(Ξ) = ln(1 + z)− gV

(
2πm

βh2

)3/2

Li5/2(−z) (3.54)

• From the definition of fermions we know the ground state can hold at most one particle, so in our
following calculations we can ignore the ground state, which corresponds to dropping the first term
above.

We can now calculate the average particle number via 1.8 leading to:

⟨N⟩ = −gV

(
2πm

βh2

)3/2

Li3/2(−z) (3.55)

And using 1.10 the average energy is:

⟨E⟩ = − 2

3β
gV

(
2πm

βh2

)3/2

Li5/2(−z) (3.56)

This involves the same tricks we used in the Bosonic case 3.24. We can then notice that this is
simply just ⟨E⟩ = 2

3β ln Ξ, and recalling grand canonical potential is just J = −PV = − 1
β ln Ξ, we

can write:

⟨E⟩ = 3

2
PV (3.57)

3.4.1 Classical and quantum regimes

• It is however most usefully to write ⟨E⟩ as:

⟨E⟩ = 3

2β
⟨N⟩

Li5/2(−z)

Li3/2(−z)
(3.58)

As then we can consider the classical limit, i.e the limit as z << 1 (this is because T is large). In
this limit Lir(−z) ≈ −z, so we have:

⟨E⟩ ≃ 3

2
kT ⟨N⟩ (3.59)
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• Where as in the low temperature limit, i.e. the quantum regime (z >> 1), it is useful to use the
following expansion of poly logs in powers of ln z:

Lir(−z) =
(ln z)r

Γ(r + 1)

1 + 2r
∞∑
j=1

(r− 1) · · · (r− (2j− 1))

(
1− 1

2j

)
ζ(2j)

(ln z)2j


Lir(−z) =

(ln z)r

Γ(r + 1)

(
1 +

π2

6

r(r + 1)

(ln z)2
+ · · ·

) (3.60)

We can then write ⟨E⟩ from 3.58 as:

⟨E⟩ ≃ 3

5
kT ⟨N⟩ ln z (3.61)

Where here we have used only the first term from 3.60.

3.5 Fermi-Energy

• Using the expansion 3.60, we can write 3.55, for z >> 1, (T → 0) as:

⟨N⟩ ≃ gV

(
2πm

βh2

)3/2 (ln z)3/2

Γ(5/2)
(3.62)

And since z = eβµ =⇒ ln z = βµ, so we can see that the β’s will cancel, meaning there is a low
enough temperature, at which µ becomes constant, even for fixed ⟨N⟩ = N . This value of µ we will
call ϵF , for reasons we will see later, and is given by:

ϵF =

(
h2

2πm

)(
Γ(5/2)N

gV

)2/3

=

(
h2

2πm

)(
3πN

4gV

)2/3

= lim
T→0

µ (3.63)

Where we have used Γ(5/2) = 3π/4. What is very interesting about this is that we can now see that
the average occupancy level as given by 3.5, now turns into a step function as T → 0, depending on
weather the energy ϵ is above or below this ϵF :

=⇒ ⟨n(ϵ)⟩ = 1

eβ(ϵi−µ) + 1
=

{
1, ϵF > ϵ

0, ϵF < ϵ
(3.64)

This is because the sign of the exponential changes based on the two conditions. This property
makes ⟨n⟩ behave like a step function for T → 0 with the transition point at ϵ = ϵF . This is why it
is denoted ϵF , and this particular energy is called the Fermi energy. Below the Fermi energy, each
state is occupied by one molecule, where as above it, there are no occupied states.
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• If we want to calculate the total average energy in terms of the Fermi energy we just have to
calculate:

⟨E⟩ =
∫ ∞

0
dϵWc(1, ϵ) ⟨ϵ⟩ =

∫ ∞

0
dϵWc(1, ϵ) ⟨n⟩ ϵ

=⇒ lim
T→0

⟨E⟩ =
∫ ϵF

0
dϵWc(1, ϵ)ϵ, (⟨n⟩ → 1)

(3.65)

If we then use out expression for Wc(1, c) from 3.12, (ignoring the ground state as it vanishes after
the integral is evaluated) we get that:

lim
T→0

⟨E⟩ =
∫ ϵF

0
dϵ

gV (2π)(2m)3/2

h3
ϵ3/2 =

2gV (2π)(2m)3/2

5h3
ϵ
5/2
F =

4gV

5π

(
2πmϵF

h2

)3/2

ϵF

(3.66)

Then if use our expression for N above 3.62 (after cancelling the kT ’s), we get that:

N = gV

(
2πmϵF

h2

)3/2 4

3π
(3.67)

So we get that the average energy as T → 0 is given by:

E =
3

5
NϵF (3.68)
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4 Blackbody Radiation

• Here we will be considering the scenario of a cavity of volume V containing photons (free bosonic
particles) with the idealised case that the surrounding body absorbs and emits light of all frequencies.
We will look at the system when at equilibrium, with T ̸= 0.

4.1 Ultraviolet Catastrophe

• Classically we had that due to the equipartition theorem the average energy of the system is given
by ⟨E⟩ = 1

2kT (we are talking about a single particle), so the energy density ε ≡ E
V , would be given

by ⟨ε⟩ = kT
2V .

• Where the Catastrophe comes in is if we try find this above result from quantum statistical mechanics
. In the usual manner we treat this semi-classically, relating the density of frequencies to the energy
density, via ε(ω)dω = Wc(1, ω)

kT
2V dω, we then would like to write this in terms of momentum as we

can find the quantity Wc(1, p), here we can use 2.24, so ε(ω)dω becomes:

Wc(1, p)dp =
4πgV

h3
p2dp =

8πV

h3
ℏ3k2dp (4.1)

Where we have used the fact that photons have two degeneracy’s (corresponding to the two trans-
verse ways they oscillate), and we have used the fact that p = ℏk. Finally using ω = kc (equivalent
to c = fλ) and plugging this all in, we see ε(ω)dω becomes:

ε(ω)dω =
ω2

π2c3
kT

2
dω =

x2dx

π2c3ℏ3β4
, x = βℏω (4.2)

The problem, or catastrophe even, is that we have an energy density that increases with frequency,
so integrating over all frequencies to calculate any sort of average will diverge, not realistic!

4.2 Planck’s Law

• The solution to this problem is to instead look at expressing the average energy through occupation
number as then we can use our previously developed Bose-Einstein statistics to solve the problem.
This means that in the energy density we had earlier 1

2kT , should be replaced with ⟨n⟩ωℏ, as we
assume our system consists of particles with energy ϵ = ℏω, so we combine this with the occupancy
level of each frequency ⟨n⟩. We can then use our expression for occupancy level that we have in 3.5,
for bosons so with a minus.

• This comes with one caveat, we are treating our gas as an interaction-less gas, as photons cant
interact with each other. But we still need a mechanism for transferring energy so that we can
reach an equilibrium. (In the case of a regular ideal gas, the mechanism for transferring energy is
just elastic collisions between the particles). If we constrain our system to be in a volume V , then
the mechanism by which equilibrium can be established, is through the absorption and emission of
photons by the matter of the surroundings. This results in the number of photons N , not being
conserved, making N itself being variable, that must be determined by the conditions of equilibrium.
We know from thermodynamics, that at constant temperature, the Helmholtz Free energy F is at
a minimum, and since N is our variable that governs change in the system, we must have that at
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equilibrium ∂F
∂N = 0. But we know this quantity! this is the chemical potential. This means we have

the very important property that for a photon gas:

µ = 0 (4.3)

Another way of interpreting this is that, there is no work associated with adding/removing particles
from our system. This means we can write the energy density ε(ω)dω as:

ε(ω)dω =
Wc(1, ω)

V
(⟨n⟩ωℏ)dω

=
ω2

π2c3
ℏω

eβℏω − 1
dω

(4.4)

Where we have used the same Wc(1, ω) as in 2.24. This is Planck’s law.

• We can then once again make the change of variables x = ℏωβ, which results in:

ε(x)dx =
x3

π2c3β4ℏ3
dx

ex − 1
(4.5)

We can make this dimension less by looking only at the factor containing x, so we define:

U(x)dx ≡ π2c3β4ℏ3ε(x)dx =
x3

ex − 1
dx (4.6)

• Now we can look at the limits of this expression, for x << 1, the regime of small frequencies or
classical regime (T >> 0), we have that U(x) ≃ x2 (the low frequency limit that we had in the
ultraviolet catastrophe). But in the large x limit x >> 1, we have that U(x) ≃ x3e−x. This
corresponds to the limit of high frequency or low temperatures and can be recognised as Wiens
Law.

4.3 Stephan Boltzmann law

• We can get the total energy density by integrating ε(x) over all x:

⟨ε⟩ =
∫ ∞

0
ε(x)dx =

1

π2c3β4ℏ3

∫ ∞

0

x3

ex − 1
dx =

(kT )4

π2c3ℏ3
π4

15
(4.7)

Where we have calculated this integral in a similar way to 2.27. This is the Stephan Boltzmann Law
, but it is not in the most recognisable form. If we open a small hole (the small hole is so that we
have a point source of radiation that is easier to work with) in our blackbody cavity we would like
to know the flux F emitted. If we recall that total energy density ε is related to energy flux F by
F = εc, as the energy in the form of photons is propagating at the speed of light. How ever we then
have to deal with the specific angles. If we orient our point so that the small hole in the cavity is
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facing the z axis, then the the flux through this hole as a function of θ is F (θ) = cε cos(θ). This is
actually known as Lambert’s cosine law, but we can just intuitively interpret this as if we are off to
the side of the hole then we wont observe as high of an intensity as if we were directly over it.

One last issue with this expression is that it is not ”normalised” in a sense, all the energy flux of
the cavity is isotropic, so only a small part of it is in the direction of the hole. So to account for
this, we must divide this expression of flux by 4π, the area of the unit sphere. We don’t have to
divide by the area of the cavity 4πV , as we are working with an energy density and have effectively
already divided by this V . Finally we can integrate our expression over all angles (with θ ∈ [0, π2 ]
as flux cannot go through and behind the blackbody itself), to get the total flux emitted from the
black body:

F =
c

4π

∫
⟨ε⟩ cos θdΩ =

π(kT )4

60c2ℏ3

∫ 2π

0
dϕ

∫ π
2

0
cos θ sin θdθ =

π2k4

60c2ℏ3
T 4 = σT 4 (4.8)

This is the Stephan Boltzmann Law we know! and σ is Stephan Boltzmann’s constant.

4.4 Radiation pressure

• We would like to then know the pressure from this radiation. To do this we first need the log of
the grand canonical partition function, for which we can use 3.4. This is a sum over the energy
levels, so we can, as we have many times before , treat this semi-classically and turn the sum into
an integral with a density of states Wc(1, ϵ)dϵ =

4πgV
h3c3

ϵ2dϵ, which comes from Wc(1, p) 2.24 and the
relation ϵ = pc :

ln Ξ = −
∑
i

ln(1− ze−βϵi) ≃ −
∫ ∞

0
dϵWc(1, p) ln(1− ze−βϵ) = −4πgV

h3c3

∫ ∞

0
dϵ ln(1− ze−βϵ)ϵ2

(4.9)

We can then integrate this expression by parts:

ln Ξ = −4πgV

h3c3

[
ϵ3

3
ln(1− ze−βϵ)

∣∣∞
0

− 1

3β

∫ ∞

0
dϵ

ϵ3

eβϵ − 1

]
(4.10)

Imposing the limits makes the first term in the brackets here vanish, leaving us with a familiar
integral: ∫ ∞

0
dϵ

ϵ3

eβϵ − 1
=

1

β4

∫ ∞

0
dx

x3

ex − 1
= (kT )4

π4

15

=⇒ ln Ξ =
4π5gV

45h3c3
(kT )3

(4.11)

Using the fact then that the grand canonical potential J = −PV = −kT ln Ξ, we can see that:

P =
4π5g

45h3c3
(kT )4 =

1

3

π2g

2(15)ℏ3c3
(kT )4 (4.12)
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Then if we use the fact that g = 2 for photons and compare this expression to the energy density
in 4.7, we get the nice result that:

P =
1

3
⟨ε⟩ = 1

3

(
4σ

c

)
T 4 =

1

3
aT 4 (4.13)

Where we have relabelled the factor of 4σ
c as a.

4.4.1 Radiation entropy

• This can be calculated easily from looking at the potentials. We have that −PV = J = F−µ ⟨N⟩ =
F , and since F = ⟨E⟩ − TS =⇒ PV = TS − ⟨E⟩, Then using our above expression 4.13 for the

pressure P = 1
3 ⟨ε⟩ =

⟨E⟩
3V , we can write the entropy as:

S =
4 ⟨E⟩
3T

=
4PV

T
∝ V T 3 (4.14)

• This means that for a reversible adiabatic process V T 3 = const ⇐⇒ PV
4
3 = const, as P ∝ T 4.

This reminds us of the classical PV γ = const, where γ is given by γ = CP
CV

. But this is not true in
quantum mechanics, since:

γ =
CP

CV
=

(
∂V
∂P

)
T(

∂V
∂P

)
S

=
1(

∂V
∂P

)
S

1(
∂P
∂V

)
T

→ ∞ (4.15)

As
(
∂P
∂V

)
T
= 0 as P = 1

3aT
4, is independent of volume.

- 30 -



Statistical Physics II 5 Statistical physics in d-dimensions

5 Statistical physics in d-dimensions

• It is often quite useful to generalise our calculations to that of d space dimensions (so d+ 1 space-
time dimensions). This not only allows us to plug in for d = 1, 2, 3, to get results we would be
able to produce in real life but it is good to see what range of dimensions do phenomena occur in.
This can give us new insights into these phenomena or even confirm that we do indeed live in three
dimensions!

5.1 An even more general density of states

• In section 2.6 we saw how we could write down the density of state in terms of momentum W (p)dp,
this was in d = 3 so we we would like to now generalise the result to d−space dimensions!

• For this we follow the same approach this time writing down the number of microstates as:

Ω = g

∫
ddpdpq

hd
(5.1)

g is again the degeneracy. We can then integrate over all the spatial co-ords, which before gave us
the volume, for now we will let this be

∫
ddq = Ld, where L is the characteristic scale of the system.

The remaining integral can be split up into the magnitude and angular parts. In d = 3, this left us
with a d3p = p2 sin θdpdθdϕ. This in d dimensions can be generalised to ddp = pd−1dpdΩd, where
Ωd is the d-solid angle or the area of the d − 1-Sphere Sd−1, with unit radius. This all means our
integral becomes:

Ω =
gLdSd−1

hd

∫ ∞

0
pd−1dp (5.2)

• Then we can do the same trick we did in section 2.6 and say the number of microstates with
momentum p less then some max value P is:

Ω(P ) =
gLdSd−1

hd

∫ P

0
pd−1dp =

gLdSd−1

hd
P d

d
(5.3)

Then the density of states W (p)dp is just the number of microstates with momentum lying between
p and p+ dp, so:

W (p)dp =
d

dP
Ω(P )

∣∣∣∣
P=p

dp

=⇒ W (p)dp =
gLdSd−1

hd
pd−1dp

(5.4)
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5.1.1 General dispersion relation

• We are on a roll of being general, so why stop here? Lets now see if we can get an expression for
the density of energy states for a general dispersion relation. Dispersion relations usually take the
form ϵ = aps. Examples of this include the regular free particle when the energy of each particle is
p2

2m , or for relativistic free gas when it becomes ϵ = cp. So we can clearly see that if we solve this
generally for ϵ = aps, then we can apply our results to many types of problems!

We know that density of states in different variables satisfy W (ϵ)dϵ = W (p)dp, so since ϵ = aps =⇒
dϵ = asps−1dp, so we can write 5.4 as:

W (ϵ)dϵ =
gLdSd−1

hd

( ϵ
a

) d−1
s dϵ

as( ϵa)
s−1
s

=
gLdSd−1

hd

( ϵ
a

) d−1
s

− s−1
s dϵ

as
=

gLdSd−1

shd
a−

d
s ϵ

d
s
−1dϵ

(5.5)

• From my ”Statistical physics I” notes we have that the area of a d−1-sphere is Sd−1 = 2πd/2/Γ(d/2),
so we can write this expression as:

W (ϵ)dϵ =
2g

sΓ(d/2)

(√
πL

ha1/s

)d

ϵ
d
s
−1dϵ (5.6)
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