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The Unruh Effect




The Unruh Effect

Rindler Observers

Equations of Motion:

t(r) = - sinh(ar)

x(1) = %cosh(aT)

Rindler observers take a hy-
perbolic path through space-
time approaching the speed of

Ilght See ACM Il Homework 4 for proof.

Rindler Observer
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The Unruh Effect

Rindler Co-ordinates

Relations to x and t

1 1
t= geaf sinh(an), x= 5e"£ cosh(an)

@ This makes the Minkowski metric ds? = —dt? + dx? become:
ds? = 2% [—dn?® + d&?]

@ Simplest quantum fields: spin 0 massless Klein Gordon particles.

@ In Rindler spacetime the Klein Gordon equation ¢ = g"”9,,0,¢ = 0,
becomes:
2 2

@ But wait, have we covered all accelerating observers?
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The Unruh Effect

Two Causally Disconnected Regions

@ No! We need more co-ords:

1 1
t = —geag sinh(an), x= —;eag cosh(an)

Second Rindler Observer
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Two Causally Disconnected Regions




Quantising Rindler Spacetime

e Solving the KG equation gives us modes that are o e/(=<1tk€) Byt
we need to do this for the two regions:

Two sets of modes

1 {‘éwe—iwmﬁk& Region |
8 = 0

Region Il
g(z) _ 0 Region |
k \/‘Jere+’“’k"+’k5 Region |

@ This leads to the expansion of the scalar field ¢:
¢ = / dk g _|_ b(l)]L ( )* + b( )g( )+ b(2)fgl£2)*

o Where [b], bi] = (27)5(k — K').
Temperature from QFT 20th March 2025



The Unruh Effect

Extension to Minkowski co-ordinates

@ Goal: Figure out what the Minkowski vacuum looks like to the
Rindler observer.

@ Need to express Minkowski modes in terms of Rindler modes.

Rindler modes in terms of x and t J

\/47rwg,£1) =a% (x — t)i?w

@ But we need to cover all of Minkowski spacetime? So we need to add:

47rwg£2k)* = a%(—x +t)

iw
a

@ So we can combine:

A o g + (-1)7 g%
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The Unruh Effect

Normalization

o If we normalize these modes we find the constant of proportionality is:

1
A=
27'rw

1—e"

@ This means we can expand the scalar field ¢:
6= / dk [P+ cMThD™ 4 P hP o+ PTE]

@ Where ¢, [0p) = 0.
- / akA [ (e + e~ gD7) + VT (g + e P) + (1) (2)]

_/Oodk|:b() ()+b(1)T (1)« Jrbl((z)gé)er()T (2)}
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The Unruh Effect

Particles

Relation of by and ¢,
]. W
b = = (P + =%

_ 27w

1—e -

@ Meaning the Number operator is:

2w
1)+, (1 e 2) (2
(Ni) = (Op| BPTBM 04) = P (O] <@ jop)
@ So we have:
(Nk) 1
”k pr pr e
( > V e23 _1
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The Unruh Effect

Temperature

@ This is the occupancy number for a Planck distribution with
temperature:

Unruh Temperature

T=—
2w

@ So an accelerating observer will see the Minkowski vacuum as a
thermal bath with a temperature!

o If we return to Sl units and restore the factors we get that this
temperature is:

B ha
- 2wck

~ 4.055 x 107214 [K]
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Hawking Radiation

Black Hole Spacetime

Schwartzchild Metric
2GM 5 dr?

2 _
ds® = — 1—i dt —i—w

(1-25%)

+ r* (d6? + sin” 0d¢?)

e Hawkings calculation considered com-
paring vacuum in the far past far from
the black hole, to the vacuum in the
future close to the black hole.
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Particle Creation by Black Holes
S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, Englund

Reccived April 12, 1975

Abstract. In the dlussicul theory black holes can only absorb and not emil particles. Howerver i
is shown that quantum mechanical effects cause Muk holes to create and emit particles as if they
were hot bodies with temperature ,’7~m Tf‘ K where 5 is the surface gravity of the black
Hole. This thermal emision fads (0 a slow decrease i the nnas ofthe black hole and to s eventual
disappearance: any primordial black hole of mass less than about 10'* g would have evaporated by
now. Although these quantum effects violate the classical law that the area of the event horizon of 2
black hole cannot decrease, there remains a Generalized Second Law: S 34 never decreases where §
s the entropy of matter outside black holes and o€ is the sum of the surface arcas of the event horizons.
This shows that gravitational collapse converts the baryons and leptons in the collapsing body into
entropy. It is empting ta speculate that this might be the reason why the Universe contains so much
entropy per baryon
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Hawking Radiati

Picturing Black Holes

1
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Picturing Black Holes
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Hawking Radiation

Horizon Observers

@ When we relate the co-ordinates near the black hole to those in far
away in the past, we find:

Hawking Radiation

1
<nw> = e8™Mw _ 1

@ Where the Temperature is now T = ﬁ = 5-. k is the surface
gravity.

@ Where does the myth of particle and anti-particle come from?

@ The exact same spectrum can be calculated for ingoing particles.

@ Both occupation numbers are “entangled” in the sense that their
occupation numbers are correleated.
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Hawking Radiation

“Consideration of particle emission from black holes would seem to
suggest that God not only plays dice, but also sometimes throws them
where they cannot be seen.”

-Stephen Hawking
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Hawking Radiation

Thanks for Listening!
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Appendix 1

How does the KG equation change in curved spacetime? Recall we change:

Sz/ﬁd"x—>/\/|g\£d"x

So the KG is action £ = 1./[g[ (" V.V, — m*p?). This has the
equations of motion g"”V,V,p = [y = 0. We can make the ansatz that
the field can be separably written as:

1
Y = ;f(n t) Yem(97 d))
In the case of the Schwartzchild metric the solution for f is:

02 4 O — (1-%‘”) <2M+W+1)> F=0

3 2

Both far from the black hole (r >> 0) and close to the horizon r ~ 2GM,
this potential is ~ 0, so f satisfies the KG equation.
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Appendix 2

@ What do null geodesics look like in this spacetime? Solution define r*:

2M r
2 2 *2 2 *
=11 Q,, = 2M | ( —1)
ds ( r>[ dt* + dr ]—i—rdg r r+ n M

o Null geodesics must have —dt?> + dr*?2 =0 = dt = +dr*.
@ These two solutions correspond to in going and out going geodesics:

In-going Out-going
v=t+r" u=t—r"
How do we describe observers near the horizon when (1 — 2¢M) —; 07,

Kruskal co-ordinates
U — _e—u/4GM V = eV/4G/\/I
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