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Introduction
The two pillars on which modern theoretical physics stands on, are General
Relativity (GR) and Quantum Field Theory (QFT). On one hand these
theories are so fundamentally different, that we have been unsuccessful
at creating a theory of quantum gravity. On the other hand, these two
theories, both being field theories, are compatible at a semi-classical level.
This project studied how quantum fields propagating in different space-
times can lead to many interesting results, particularly to do with black
holes. First the Unruh effect [3] was studied to introduce how QFT can
lead to particle creation. Next building on this, Hawking’s original paper
[2] on Hawking radiation was studied to see how this could be extended to
black holes. Finally Raphael Bousso and Stephen Hawking’s 1997 paper
“(Anti-)Evaporation of Schwartzchild-de Sitter Black Holes” [1] was studied
to see how black holes could evolve in the presence of quantum fields.

The Unruh Effect

Accelerating observer in a Minkowski
diagram approaching v = c.

From Einstein’s theory of Spe-
cial Relativity we are familiar
with the laws of physics being
the same in every inertial frame.
What happens if we betray Ein-
stein and compare an inertial ob-
server with a non-inertial (accel-
erating) frame; what affects will
we see? It can be shown with
some relatively simple QFT that
a constant accelerating observer
with acceleration a, will see the
vacuum of a stationary observer
to be full of particles.

This comes from the fact that if you examine a scalar Klein Gordon field in
the co-ordinates of the stationary (labeled with c) and accelerating (labeled
with b) observers you find that the creation and annihilation operators obey
the following relation:
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This means that when the accelerating observer acts on the vacuum in the
frame of the stationary observer, the result is the creation of a particle due
to the presence of c†. In fact if one carries out a formal calculation of the
number of particles seen by the accelerating observer, one finds a Planck
black body spectrum with a temperature T = a

2π :

Hawking Radiation

Penrose diagram of collapsing
matter forming a Schwartzchild

black hole

The Unruh affect, while in flat
spacetime teaches us the most im-
portant lesson of QFT in curved
spacetime, that being that the
idea of the “vacuum” and “parti-
cles” are observer dependent quan-
tities. Hawking Radiation comes
from similar considerations; we
have two different notions of a vac-
uum that arise, not just because
one observer is accelerating, but
due to the geometry of spacetime.
When we relate the co-ordinates
near the black hole to those in far
away in the past, we find again
a Black body spectrum, this time
with temperature T = 1/8πM =
κ
2π . Where κ is the surface gravity.

The idea of pair production at the horizon comes from the correlation of
outgoing and ingoing spectra, =⇒ occupation numbers are entangled.

Anti evaporation of certain black holes
If we extremise the Einstein Hilbert action with a cosmological constant
we find the following Schwarzschild-de Sitter (SdS) metric:
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In their paper Bousso and Hawking analyze the stability of this black hole.

Black hole near maximal size of cosmological horizon
Close to this limit the above SdS metric can be written in the form:
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With specific ρ and ϕ. Using this metric we can integrate out the an
angular co-ordinates to obtain a two dimensional model:
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Where we have introduced N scalar fields f as the Large N limit is needed
to have evaporation contribute. To take quantum effects into account the
scale-dependent part of the one-loop effective action for the N dilaton
coupled scalars are added to this action. This introduces non-local terms
which can be rendered local by the addition of an additional field Z:
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The equations of motions of the fields can then be solved for and the
dynamics of the black hole horizons determined from them. The classical
case N = 0 results in static horizons. However, when N > 0 quantum
effects enable evaporation to occur and the horizon positions can be found
to move. If one solves the equations of motion perturbativly, it can be
shown that at first order, under the initial condition that the horizons are
slightly peturbed (by σ0), the separation of the horizons δ(t) becomes:
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This means the black hole increases back towards the maximal size once
perturbed in this mode. It Anti-Evaporates! It turns out however, that
this is not the only mode, and that the other modes lead to evaporation.

Conclusion
In conclusion, this project has explored key aspects of quantum field theory
in curved spacetime, with a focus on black hole dynamics. Starting with
the Unruh effect, we examined how accelerating observers perceive parti-
cle creation in a vacuum, leading to the understanding that particle and
vacuum states are observer-dependent. Building on this foundation, we
studied Hawking radiation, demonstrating how black holes emit radiation
due to quantum effects near their event horizons. Finally, we investigated
the concept of black hole anti-evaporation in the Schwarzschild-de Sitter
spacetime, where quantum corrections can lead to unexpected dynamics,
such as the black hole’s expansion after perturbations. These results un-
derscore that even in the absence of a theory of quantum gravity, many
interesting aspects of black holes and horizons in general can be studied,
paving the way for future advancements towards such a theory.
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