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Abstract

We investigate how the Keplerian parameters of a binary system containing a pulsar and a
companion star, change in time. This timing model is parameterized by the post Keplerian
parameters. These parameters are then used to combine measurement and theory in mass-
mass diagrams that provide accurate tests of any given theory of gravity. This is based on
the crossing of the post Keplerian parameter curves in the mass-mass space. The theories of
Gravity tested were General Relativity and Yukawa like addition to General Relativity. This
report contains the derivations for all the parameters for both these theories, correct up to the
same order. For General Relativity it was confirmed that this theory passes the mass-mass
diagram tests with ease, where as for Yukawa gravity it was shown that the theory does not
differ significantly enough on this scale to show meaningful difference from GR under current
measurement capabilities.
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1 Introduction

Pulsars are rapidly-rotating and highly-magnetised neutron stars that emit radiation from
their poles. Pulsars are useful as they provide tests of strong-field gravity in ways impossible
on Earth-bound laboratories or even in our Solar system. The pulsars of interest are found
in binary systems meaning they have a companion star. To fully describe a binary system 6
parameters known as Keplerian parameters are needed. Tests of the theories of gravity are
carried out by examining deviations from the Keplerian description on a mass diagram. Due
to various effects of gravity Keplerian parameters are not stable in time. This is very evident
in pulsar binaries. Here the timing model of how the system changes is parameterized by post
Keplerian (PK) parameters [4].

• ω̇ the periastron advance

• Ṗb the orbital decay

• γ Einstein delay

• r Shapiro range

• s = sin(i) Shapiro shape

These parameters can be expressed purely as functions of the mass of the pulsar mp and its
companion mc [5]:

• ω̇ = 3T
2/3
⊙

(
2π
Pb

) 5
3 (mp+mc)

2
3

(1−e2)
,

• γ = T
2/3
⊙

(
2π
Pb

)− 1
3
e
mc(mp+2mc)

(mp+mc)
4
3

• r = T⊙mc

• s = sin(i) = T
− 1

3
⊙

(
2π
Pb

)− 2
3 x(mp+mc)

2
3

mc

• Ṗb = −192
5 T

5
3
⊙

(
2π
Pb

) 5
3 (1+( 73

24
)e2+( 37

96
)e4)

(1−e2)
7
2

mpmc

(mp+mc)
1
3

These parameters allow one to create mass-mass diagrams for several pulsars, providing a
method of testing a given theory based on the fact that all the parameter curves must cross
at the same point. For N measured parameters the mass-mass diagram provides N − 2 tests
of the given theory of gravity. To no surprise GR passes these tests with flying colours. See
Figures 1 and 2 below. These mass-mass diagrams were developed with code that can be
found at: https://github.com/Tbrosnan12/Hamilton-trust-2023.

Derivations of most of these parameters were not easily available in any publication I could
find. So, time was spent carefully deriving the above expressions and compiling them all in
one place to avoid such an issue for anyone else. These derivations are shown in this report
below, though the proof of Ṗb is omitted as it far longer and more complicated then the other
expressions.
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2 Mass-Mass diagrams

Figure 1: Full mass-mass diagram, masses are in units of M⊙

Figure 2: Zoomed in mass-mass diagram, highlighted area is allowed range for the binary
masses
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These Mass-Mass diagrams are contour plots of all the allowed pair values of mp and mc that
give rise to the actual values of the PK parameters that are physically measured by analysing
real pulsar data.

Figure 3: This shows the pulsar timing residuals in the tempo2 software

The tempo2 software allows you to interpret the pulsar data, which initially is just a list of
time of arrivals (TOAs), time stamps for when the pulse from the pulsar was received. From
this tempo2 creates a model for the pulsar’s parameters and plots the difference between the
model and the actual TOAs. These are the timing residuals. Then the software can using
fitting methods to fit for values of the various pulsar parameters, such as Keplerian, post
Keplerian and many more. All of this reduces the residuals until they look like Figure 3. The
tempo2 software is used to fit binary pulsars for their PK parameters and these values are
then used to create mass-mass diagrams as shown in Figures 1 and 2.
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3 General Relativity

Here we provide the full derivations of the post Keplerian parameters that determine the
timing model for how a pulsar in a binary with a companion star changes in time due to
carious effects of gravity. The first section derives these equations using the Einsteins general
relativity.

3.1 Periastron advance ω̇:

For this derivation all though there is no explicit derivation that can be found anywhere online,
it is pretty evident that this equation for the periastron advance we show at the end follows
naturally from the equation used to predict the precession of mercury. Thus we follows Sean
Carroll’s approach from his book, ”Spacetime and geometry” [2].

Einsteins field equations have an exact solution when considering a spherically symmetric star
of mass M. This results in the Schwarzschild metric:

g = ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2+

(
1− 2GM

rc2

)−1

dr2+r2(dθ2+sin2 θdϕ2). (3.1.1)

Then using the fact that the action of a relativistic point particle is:

S = −mc2
∫
dτ. (3.1.2)

With the definition of proper time τ as dτ2 = − 1
c2
gµνx

µxν , integrating along the path of this
point particle results in:

τ =
1

c

∫ 1

0
dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (3.1.3)

Thus the action becomes:

S = −mc
∫ 1

0
dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (3.1.4)

Letting G =
√
−gµν dxµ

dλ
dxν

dλ and noting that if the Lagrangian is defined as L = G2 then

varying the action results in the same geodesic equation , since an extremum of G must be
an extremum of L, due to: δL = 2GδG. This means for the Schwarzschild metric along with
Restriction that this is a Binary system, i.e. we let θ = π/2. The Lagrangian is:

L =

(
1− 2GM

rc2

)
c2ṫ2 −

(
1− 2GM

rc2

)−1

ṙ2 − r2ϕ̇2. (3.1.5)

Here still over-dots denote derivative with respect to λ. Both t and ϕ are cyclic so the Lagrange
equations are:

d

dλ

(
∂L
∂ṫ

)
= 0 =⇒ E ≡ 1

2

∂L
∂ṫ

=

(
1− 2GM

c2r

)
c2ṫ. (3.1.6)
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d

dλ

(
∂L
∂ϕ̇

)
= 0 =⇒ L ≡ −1

2

∂L
∂ϕ̇

= r2ϕ̇. (3.1.7)

There is also the constraint that the metric −gµν ẋµẋν = −uµuµ = c2, (letting λ → τ), a
constant. Thus since L = c2:

−E2 + ṙ2 +

(
1− 2GM

c2r

)(
L2

r2
+ c2

)
= 0. (3.1.8)

Then letting E = E2

2c2
this takes the form:

1

2
ṙ2 + V (r) = E (3.1.9)

. Where:

V (r) ≡ c2

2
− GM

r
+
L2

2r2
− L2GM

c2r3
(3.1.10)

Using: (
dr

dτ

)2

=

(
dϕ

dτ

)2( dr
dϕ

)2

=
L2

r4

(
dr

dϕ

)2

. (3.1.11)

Then 3.1.9 becomes:

(
dr

dϕ

)2

+
c2r4

L2
− 2GMr3

L2
+ r2 +

−2GMr

c2
=

2Er4

L2
. (3.1.12)

Using the substitutions u ≡ L2

GMr =⇒ du
dr = − L2

GMr2
=⇒

(
dr
dϕ

)2
=
(
du
dϕ

)2 (
GMr2

L2

)2
. Thus:

(
du

dϕ

)2

+
c2L2

(GM)2
− 2u+ u2 − 2(GM)2u3

c2L2
=

2EL2

(GM)2
. (3.1.13)

Differentiating with respect to ϕ results in the following after canceling all the factors of du
dϕ :

d2u

dϕ2
− 1 + u =

3(GM)2u2

c2L2
. (3.1.14)

In Newtonian mechanics the term on the RHS is 0, so to solve this problem in GR we consider
u to be the Newtonian solution plus a small deviation. Thus u = u0 + u1. Then:

d2u0
dϕ2

− 1 + u0 = 0. (3.1.15)

Then letting α = 3(GM)2

c2L2 :

d2u1
dϕ2

+ u1 = αu20 +O(α2). (3.1.16)

Where we have dropped the two terms on the RHS with u1 in them as u1 is small and so is
the factor of α. This assumption that u1 ≈ α, is self consistent as can be seen in the equation
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below where the solution to u1 is proportional to α. The first ODE’s solution is well known:
u0 = 1 + e cosϕ. Subbing this in to the second ODE results in:

d2u21
dϕ2

+ u1 = α

[
1 +

1

2
e2 + 2e sinϕ+

1

2
e2 cos 2ϕ

]
. (3.1.17)

To which one solution can be obtained courtesy of mathematica:

u1 = α

[
1 +

1

2
e2 + eϕ cosϕ− 1

6
e2 cos 2ϕ

]
. (3.1.18)

The only non-periodic term here is eϕ cosϕ,:

u = 1 + e cosϕ+ αeϕ sinϕ. (3.1.19)

Then assuming α is small as it is for pulsars the orbit equation becomes:

r =
L2

GM(1 + e cos((1− α)ϕ))
+O(α2). (3.1.20)

As then αϕ ≈ sinαϕ and 1 ≈ cosαϕ. Thus if we measure from periastron to periastron, r
starts at a minimum when ϕ = 0 and returns to this minimum when cos((1− α)ϕ) = 1 =⇒
(1− α)∆ϕ = 2π. Thus the precession of the angle is:

∆ϕ =
2π

1− α
= 2π + 2πα+O(α2) = 2πα+O(α2) =

6π(GM)2

c2L2
+O(α2). (3.1.21)

Since L2 ≈ GM(1 − e2)a and P 2
b = 4π2a3

GM and in the case that ϕ is the periastron angle ω.
Then ω̇ = ∆ω

Pb
and thus:

ω̇ =
3(2π)5/3(GM)2/3

P
5/3
b c2(1− e2)

. (3.1.22)

Here M = mp +mc i.e. is the total mass of the system and if we use mass units of the sun

(M⊙ ) and the variable T⊙ = GM⊙
c3

, we get:

ω̇ =
3(2π)5/3T

2/3
⊙ (mp +mc)

2/3

P
5/3
b (1− e2)

. ■ (3.1.23)
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3.2 Amplitude of Einstein delay γ:

To derive this equation we follow the approach by Blanford and Teuklosky laid out in [1].
Though the approach laid out in this article is not complete and skips many important steps.

For the Einstein delay Just as above we start with the Schwarzschild metric, choosing again
to set θ = π/2 and also choosing some constant value for ϕ as the equations we need have no
ϕ dependence. Thus dϕ = 0 and the metric becomes:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2. (3.2.1)

Seeing as we are dealing with the motion of a pulsar the gravitational field effect it feels
comes from the companion star thus, M → mc and r in the denominator of the potential is
the distance between the two pulsars, where as the r in dr is the distance from the pulsar to
the barycenter rp. Also for this system since all the masses are on the order of solar masses

we can consider the quantity GM
rc2

≈ v2p
c2

≈ 10−6 is small, where vp =
drp
dt , is the velocity of the

pulsar in the binary. Then taylor expanding:

−c2dτ2 = −
(
1− 2Gmc

rc2

)
c2dt2 +

(
1 +

2Gmc

rc2
+O(

v4p
c4

)

)
dr2p. (3.2.2)

Then using vp =
drp
dt :

c2dτ2 =

(
1− 2Gmc

rc2

)
c2dt2 −

(
v2p +

2Gmcv
2
p

rc2

)
dt2. (3.2.3)

Here we can drop the last term in the last bracket as GM
rc2

≈ v2p
c2

≈ 10−6. Thus:

c2dτ2 = dt2

(
c2 − 2Gmc

r
− v2p +O(

v4p
c2

)

)
. (3.2.4)

Then:

dτ

dt
=

√
1− 1

c2
(
2Gmc

r
+ v2p) = 1− Gmc

rc2
−

v2p
2c2

+O(
v4p
c4

). (3.2.5)

Then we use the fact that the total energy of a binary system is given by:

E =
1

2
µv2 − Gmpmc

r
. (3.2.6)

Where r and v represent the relative displacement and velocity. There is no GR term in this
equation as it is very small compared to the Then using the fact that E = −Gmpmc

2a , where a
is the relative semi-major axis, we can express the velocity as:

v2 =
Gmpmc

µ

(
2

r
− 1

a

)
= G(mp +mc)

(
2

r
− 1

a

)
. (3.2.7)
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Relations like E = −Gmpmc

2a remain the same as in the Keplerian case as the contributions
from GR are small enough to be ignored. This is equivalent to deriving these relations from
equation 3.1.20. Then since rp = − µ

mp
r, then vp = − µ

mp
v. So:

v2p =
Gm2

c

mp +mc

(
2

r
− 1

a

)
. (3.2.8)

This means equation 3.2.5 becomes the following:

dτ

dt
= 1− Gmc

rc2
− Gm2

c

c2(mp +mc)r

= 1− Gmc

c2r

(
1 +

mc

mp +mc

)
= 1− Gmc

c2r

(
mp + 2mc

mp +mc

)
. (3.2.9)

Here we have dropped any constant terms as they end being proportional to t once we integrate
and can then be dropped by the re-scaling of t. To integrate this expression we consider how
r and t relate to the eccentric anomaly E. r = a(1 − e cosE), ωt = E − e sinE and thus
ωdt = (1− e cosE)dE. This means the integral becomes:

τ =
1

ω

∫ [
1− Gmc

ac2(1− e cosE)

mp + 2mc

mp +mc

]
(1− e cosE)dE,

=
1

ω

∫ [
1− e cosE − Gmc

ac2
mp + 2mc

mp +mc

]
dE

=⇒ τ =
1

ω
(E − e sinE − Gmc

ac2
mp + 2mc

mp +mc
E)

τ = t− Gmc

ωac2
mp + 2mc

mp +mc
E → t− Gmc

ωac2
mp + 2mc

mp +mc
e sinE (3.2.10)

Where we have gotten rid of the last term as the time t can be re-scaled to get rid of the
factor that is introduced from subbing in E = ωt + e sinE . Then seeing as P 2

b = 4π2a3

GM ,
ω = 2π

Pb
, (M = mp+mc) and once again taking the masses to be in units of solar masses. The

amplitude of this change in the Einstein delay is:

γ = −T
2
3
⊙

(
2π

Pb

)− 1
3 mc(mp + 2mc)

(mp +mc)
4
3

e. ■ (3.2.11)

10



3.3 Shapiro delay ∆S:

To derive the Shapiro delay we again took inspiration from [1], though the derivation in this
article is very incomplete. The derivation found in [6] was also useful but again lacked some
key steps we outline below.

Once again we begin with the Schwarzschild metric. Though this time as we are dealing
with the delay in the travel time of light beam, thus the metric becomes light like meaning:
ds2 = 0. Then once again fixing ϕ and θ so that the solid angle is 0 the metric becomes:

−
(
1− 2GM

|r|c2

)
c2dt2 +

(
1− 2GM

|r|c2

)−1

dr2 = 0, (3.3.1)

=⇒
∣∣∣∣drdt
∣∣∣∣ = c

(
1− 2Gmc

c2|r|

)
=⇒

∣∣∣∣ dtdr
∣∣∣∣ = 1

c

(
1 +

2Gmc

c2|r|

)
+O

(
(
2Gmc

c2r
)2
)

(3.3.2)

Where M → mc as the gravity well of the pulsar is just a constant and doesn’t contribute
to the spacing of the time of arrivals. Integrating from the time of emission tem to the time
of arrival tarr, results in the total time take for the light beam to travel from the pulsar to
earth. Here the RHS of the above equation when divided across has been taylor expanded as
2Gmc
c2r

is small.

tarr − tem =

∫ re(tarr)

rp(tem)

1

c

(
1 +

2Gmc

c2|r|

)
|dr| . (3.3.3)

Here re is the vector pointing from the origin which is the binary barycenter to the earth.
Then:

tarr − tem =
1

c
(rp(tem)− re(tarr)) +

2Gmc

c3

∫ re(tarr)

rp(tem)

(
1

|r|

)
|dr| . (3.3.4)

The last term of the RHS of this equation corresponds to the Shapiro delay, which when
considering r as a function of time and thus picking up an extra factor of c as |dr| = cdt
becomes:

∆S =
2Gmc

c2

∫ tarr

tem

dt

|x(t)− rc(tem)|
+ const. (3.3.5)

The |r| here has become the distance between the light beam and the companion mass. Here
x(t) is the straight line path that the light travels and is given by:

x(t) = rp(tem) +
t− tem
tarr − tem

(re(tarr)− rp(tem)). (3.3.6)

Using the substitution θ = t−tem
tarr−tem

, the bounds of the integral now go from 0 to 1. Then:

∆S =
2Gmc

c2

∫ 1

0

(tarr − tem)dθ

|rp(tem)− rc(tem) + θ(re(tarr)− rp(tem))|
. (3.3.7)

Then seeing as |re(tarr)− rp(tem)| ≈ c(tarr − tem) and |re(tarr)| ≡ |re| >> |rp(tem)| :
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∆S ≈ 2Gmc

c3

∫ 1

0

dθ

| r
|re| + θr̂e|

=
2Gmc

c3

∫ 1

0

dθ√
θ2 + 2θr̂e · r

|re| + ( r
|re|)

2
. (3.3.8)

Where r = rp(tem)− rc(tem). Then:

∆S =
2Gmc

c3

∫ 1

0

dθ√
(θ + r̂e · r

|re|)
2 + ( r

|re|)
2 − (r̂e · r

|re|)
2
. (3.3.9)

Then using the substitution θ + r̂e · r
|re| = k sinh(ψ), where k2 = ( r

|re|)
2 − (r̂e · r

|re|)
2.

2Gmc

c3

∫
k cosh(ψ)dψ

k
√
1 + sinh2(ψ)

=
2Gmc

c3
sinh−1

(
1

k
(θ + r̂e ·

r

|re|
)

) ∣∣∣∣1
0

. (3.3.10)

Then using the fact that sinh−1(u) = ln
(√

u2 + 1 + u
)
:

∆S =
2Gmc

c3

(
ln

∣∣∣∣√(θ + r̂e ·
r

|re|
)2 + (

r

|re|
)2 − (r̂e ·

r

|re|
)2 + θ + r̂e ·

r

|re|

∣∣∣∣− ln |k|
) ∣∣∣∣1

0

.

(3.3.11)
Then expanding the inside of the square root and imposing the bounds:

∆S =
2Gmc

c3
ln

∣∣∣∣∣∣
√

1 + 2r̂e · r
|re| + ( r

|re|)
2 + r̂e · r

|re| + 1

|r|
|re| + r̂e · r

|re|

∣∣∣∣∣∣ . (3.3.12)

Here k is a constant so we have lost the last term in 3.3.11. Then dropping the terms in the
square root with |re| in the denominator and imposing once again that |re| >> |r|, results in:

∆S ≈ 2Gmc

c3
ln

∣∣∣∣ 2|re|
|r|+ r̂e · r

∣∣∣∣ = 2Gmc

c3

(
ln

∣∣∣∣ 1

|r|+ |r| sin(i) sin(ω + ϕ)

∣∣∣∣+ ln 2|re|
)
. (3.3.13)

Here we can drop the constant term once again. Then using Kepler’s ellipse equation to write
|r| and once again dropping the constant factor of ln |a|:

∆S ≈ 2Gmc

c3
ln

∣∣∣∣ 1 + e cos(ϕ)

(1− e2)(1 + sin(i) sin(ω + ϕ))

∣∣∣∣ (3.3.14)

Here we have used the fact that r̂e ·r = |r| sin(i) sin(ω + ϕ), as the dot product is the projection
of r onto r̂e, scaled by |r|. Then:

∆S = −2Gmc

c3
ln

∣∣∣∣(1− e2)(1 + sin i(sinω cosϕ+ cosω sinϕ))

1 + e cosϕ

∣∣∣∣ . (3.3.15)

Where we have expanded sin(ω + ϕ) and flipped the fraction. Next we introduce again the
eccentric anomaly E. Which is related to the phase angle ϕ by: cosE = e+cosϕ

1+e cosϕ and sinE =
√
1−e2 sinϕ
1+e cosϕ , Thus:

1− e cosE = 1− e2 + e cosϕ

1 + e cosϕ
=

1− e2

1 + e cosϕ
, (3.3.16)

(1− e2)(sinϕ)

1 + e cosϕ
=
√

1− e2 sinE, (3.3.17)
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and:

cosE − e =
cosϕ(1− e2)

1 + cosϕ
=⇒ 1− e2

1 + e cosϕ
=

cosE − e

cosϕ
. (3.3.18)

Thus plugging into ??:

∆S = −2Gmc

c3
ln
∣∣∣1− e cosE − sin i(sinω(cosE − e) +

√
1− e2 sinE cosω)

∣∣∣ ■ (3.3.19)

3.4 Shapiro shape, range and the binary mass function:

The Shapiro delay is parameterised by the Shapiro range r and the Shapiro shape s. Where:

r =
Gmc

c3
= T⊙mc, (3.4.1)

s = sin i. (3.4.2)

To find the from of s we derive the binary mass function f(mc,mp). We start with the semi-
major axis of the relative orbit a, which can be written in terms of the semi-major axis of the
pulsar and it’s companion by: a = ap + ac. The total mass of the system is M = mp +mc

and by definition of center of mass mpap = mcac. This leads to:

a = ap(1 +
mp

mc
) =

apM

mc
. (3.4.3)

Inserting this into Kepler’s law:

GM =
a3pM

34π2

m3
cP

2
b

. (3.4.4)

Then defining the projected semi-major axis as x = ap sin i, The binary mass function be-
comes:

f(mc,mp) =
(mc sin i)

3

(mc +mp)2
=

4π2x3

T⊙P 2
b

. (3.4.5)

Thus:

s = sin i = T
− 1

3
⊙

(
2π

Pb

) 2
3

x
(mp +mc)

2
3

mc
■ (3.4.6)
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4 Yukawa addition to General Relativity

The simplest way to modify GR is to generalize the Einstein - Hilbert action by changing
from just the Ricci scalar to an arbitrary function of the Ricci scalar f(R), with the simple
condition that in the weak field limit the theory tends towards GR. This is preferred over
alternate theories that have to produce ad-hoc mechanisms to explain the lack of evidence in
Solar system environments. f(R) gravity results in a Yukawa-like term being added to the
gravitational potential δe−

r
λ . Here λ is the scale length of the theory and must very large in

order to reduce to GR in the weak field regime and δ the strength of this theory. Modifying
the Einstein-Hilbert action leads to:

S =

∫ √
−gf(R)d4x+ Sm. (4.0.1)

This then leads to a slightly changed Schwarzschild metric that takes the following form:

g = −

(
1− 2GM

rc2
(1 + δe−

r
λ )

1 + δ

)
c2dt2 +

(
1− 2GM

rc2
(1 + δe−

r
λ )

1 + δ

)−1

dr2 + r2dΩ2. (4.0.2)

From here the new PK parameters can be derived, However since through methods like
gravitational wave detection, a lower bound of λ > 1.6× 1016 m has been set [7]. Thus it will
often be necessary to taylor expand the exponential term. The calculation of this metric can
be found in [3]. Also in this masters thesis is the derivation of the Einstein and Shapiro delay
in Yukawa gravity though the approach is slightly different to the one we take below.

4.1 Periastron advance ω̇:

Just as we did in section 3.1 we start with a metric, which in this case is the above Yukawa
metric 4.0.2. Then as we did before letting the Lagrangian L = −gµν dxµ

dλ
dxν

dλ and setting
θ = π

2 , results in:

L = (1 + 2Φ) c2ṫ2 − (1 + 2Φ)−1 ṙ2 − r2ϕ̇2. (4.1.1)

Where:

Φ = −GM
rc2

(1 + δe−
r
λ )

1 + δ
. (4.1.2)

Both t and ϕ are cyclic so the Lagrange equations become:

d

dλ

(
∂L
∂ṫ

)
= 0 =⇒ E ≡ 1

2

∂L
∂ṫ

= (1 + 2Φ) c2ṫ. (4.1.3)

d

dλ

(
∂L
∂ϕ̇

)
= 0 =⇒ L ≡ −1

2

∂L
∂ϕ̇

= r2ϕ̇. (4.1.4)

Thus, subbing these back into the Lagrangian and letting λ→ τ such that L = c2, results in:

1

2
(1 + 2Φ)c2 =

E2

2c2
− 1

2
ṙ2 +

(1 + 2Φ)L2

2r2
. (4.1.5)
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Then letting E = E2

2c2
this takes the form:

1

2
ṙ2 + V (r) = E . (4.1.6)

. Where:

V (r) ≡ c2

2
− GM(1 + δe−

r
λ )

r(1 + δ)
+
L2

2r2
− L2GM((1 + δe−

r
λ )

c2r3(1 + δ)
. (4.1.7)

Using: (
dr

dτ

)2

=

(
dϕ

dτ

)2( dr
dϕ

)2

=
L2

r4

(
dr

dϕ

)2

. (4.1.8)

Then 4.1.6 becomes:

(
dr

dϕ

)2

+
c2r4

L2
− 2GM(1 + δe−

r
λ )r3

(1 + δ)L2
+ r2 +

−2GM(1 + δe−
r
λ )r

c2(1 + δ)
=

2Er4

L2
. (4.1.9)

Using the substitutions u ≡ L2

GMr =⇒ du
dr = − L2

GMr2
=⇒

(
dr
dϕ

)2
=
(
du
dϕ

)2 (
GMr2

L2

)2
. Thus:

(
du

dϕ

)2

+
c2L2

(GM)2
− 2(1 + δe−

L2

GMλu )u

(1 + δ)
+ u2 − 2(GM)2(1 + δe−

L2

GMλu )u3

c2L2(1 + δ)
=

2EL2

(GM)2
. (4.1.10)

Differentiating and canceling all the factors of 2
(
du
dϕ

)
:

d2u

dϕ2
= −u+

(1 + δe−
L2

GMλu )

1 + δ
+

δe−
L2

GMλuL2

GMλ(1 + δ)u

+
3(1 + δe−

L2

GMλu )(GM)2u2

c2L2(1 + δ)
+
δe−

L2

GMλuGMu

λc2(1 + δ)
. (4.1.11)

Now to simplify this ODE taking advantage of the lower bound of λ, we can taylor expand

the exponential terms. e−
L2

GMλu ≈ 1− (1−e2)
u ( aλ)+

(1−e2)2

2u2 ( aλ)
2. Here we have also used the low

eccentricity approximation that L2 ≈ aGM(1− e2). Thus the ODE becomes:

d2u

dϕ2
= −u+

(1 + δ(1− (1−e2)
u ( aλ) +

(1−e2)2

2u2 ( aλ)
2))

1 + δ
+
δ(1− (1−e2)

u ( aλ) +
(1−e2)2

2u2 ( aλ)
2)L2

GMλ(1 + δ)u

+
3(1 + δ(1− (1−e2)

u ( aλ) +
(1−e2)2

2u2 ( aλ)
2))(GM)2u2

c2L2(1 + δ)

+
δ(1− (1−e2)

u ( aλ) +
(1−e2)2

2u2 ( aλ)
2)GMu

λc2(1 + δ)
. (4.1.12)

Then rearranging and ignoring any terms of order ( aλ)
3 we get the following ODE:
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d2u

dϕ2
+ u = 1− δ

1 + δ

(1− e2)

u
(
a

λ
) +

δ

1 + δ

(1− e2)

u
(
a

λ
) +

3(GM)u2

c2a(1− e2)

+
δ

1 + δ

(1− e2)2

2u2
(
a

λ
)2 − δ

1 + δ

(1− e2)2

u2
(
a

λ
)2 +

3δGM(1− e2)

c2(1 + δ)
(
a

λ2
)

− δGMu

c2(1 + δ)λ
+

δGMu

c2(1 + δ)λ
− δ(1− e2GM)

c2(1 + δ)
(
a

λ
)2 +O

(
a3

λ3

)
. (4.1.13)

Here we can see that a few terms cancel. We will deal with this ODE in a similar manner
to how we dealt with the ODE in the GR case. First writing the ODE in terms of single
constants:

d2u

dϕ2
+ u− 1 =

b

u2
− au2 + c. (4.1.14)

Here:

a =
3(GM)

c2a(1− e2)
,

b = −δ(1− e2)2

2(1 + δ)
(
a

λ
)2,

c =
3δGM(1− e2)

c2(1 + δ)
(
a

λ2
)− δ(1− e2GM)

c2(1 + δ)
(
a

λ
)2. (4.1.15)

We consider u to be the Newtonian solution plus a small deviation. Thus u = u0 + u1. Then:

d2u0
dϕ2

− 1 + u0 = 0, (4.1.16)

d2u1
dϕ2

+ u1 = au20 +
b

u20
+ c+O(a2). (4.1.17)

Here we impose u1 is small and so is the factor of a. This assumption that u1 ≈ a, is self
consistent as can be seen in the equation below where the solution to u1 is proportional to
a. The factor b is also small so to keep consistency we also drop terms in the denominator of
the b term. The solution to the first ODE here is well known: : u0 = 1 + e cosϕ. Subbing
this in to the second ODE results in:

d2u1
dϕ2

+ u1 = a(1 + e cosϕ)2 +
b

(1 + e cosϕ)2
+ c. (4.1.18)

To which one solution from mathematica is:

u1 =

2be sin(ϕ) tan−1

(
(1−e) tan(ϕ

2 )√
1−e2

)
(1− e2)3/2

−
e
[
3ae4 + 3ae2 + a

(
1− e2

)
e2 cos(2ϕ)− 6

(
1− e2

)
sin(ϕ)(aeϕ+ c2)− 6a− 6b+ 6ce2 − 6c

]
6e (1− e2)
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−
3 cos(ϕ)

[
2b− e

(
1− e2

)
(ae+ 2c1)

]
6e (1− e2)

. (4.1.19)

From this we extract the only term which contributes to the precession, which is the only
non-periodic term, thus:

u1 = aeϕ sinϕ. (4.1.20)

Thus:

u = 1 + e cosϕ+ aeϕ sinϕ. (4.1.21)

Then by similar methods as section 1.1:

r =
L2

GM(1 + e cos((1− a)ϕ))
+O(a2). (4.1.22)

Noticeably since a is the same as α in section 1.1, this results in Yukawa gravity predicting
the same equation for the periastron advance as GR.

ω̇Y k = ω̇GR =
3(2π)5/3T

2/3
⊙ (mp +mc)

2/3

P
5/3
b (1− e2)

. ■ (4.1.23)
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4.2 Amplitude of Einstein delay γ:

Again following a similar method to section 3.2 we start with our modified Schwarzschild
metric, once again choosing constant values for ϕ and θ so that dΩ = 0. Thus:

−c2dτ2 = − (1 + 2Φ) c2dt2 + (1 + 2Φ)−1 dr2. (4.2.1)

Where Φ is the same as 4.1.2. Then taylor expanding the right most term as once again for

pulsars: GM
rc2

≈ v2p
c2

≈ 10−6, results in:

c2dτ2 = (1− 2Φ) c2dt2 −

(
1− 2Φ +O(

v4p
c4

)

)
dr2. (4.2.2)

The r in dr here is the distance from the pulsar to the barycenter rp, as to measure the time
dilation we need to see how the pulsar is rotating around its center of mass. Then using
vp =

drp
dt :

c2dτ2 = (1− 2Φ) c2dt2 −
(
v2p + 2Φv2p

)
dt2,

c2dτ2 = dt2

(
c2 + 2Φc2 − v2p +O(

v4p
c2

)

)
. (4.2.3)

Then:

dτ

dt
=

√
1 +

1

c2
(2Φc2 − v2p) = 1 + Φ−

v2p
2c2

+O(
v4p
c4

). (4.2.4)

For the pulsar, the r in the Φ term is the distance from the pulsar to its companion star and
the M is mc as this field is due to the presence of the companion star. Thus:

dτ

dt
= 1− Gmc

rc2
(1 + δe−

r
λ )

1 + δ
−

v2p
2c2

. (4.2.5)

Now we wish to obtain an expression for vp as we did before in section 3.2. To do this we
consider once again the the orbital energy of the binary system:

E =
1

2
µv2 − Gmpmc

r

(1 + δe−
r
λ )

(1 + δ)
. (4.2.6)

Where the relation between a and E is:

E = −Gmpmc

2a

(1 + δe−
2a
λ )

(1 + δ)
. (4.2.7)

This relation can be thought to come from the fact that there are many different possible
elliptical orbits with the same a and different E, but as the limit of ?? as v → 0 r must go to
2a, the length of the ellipses major axis. Using this relation results in the following expression
for the orbital velocity:

v2 =
Gmpmc

µ(1 + δ)

[
2(1 + e−

r
λ )

r
− (1 + δe−

2a
λ )

a

]
. (4.2.8)
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Then with vp = − µ
mp
v:

v2p =
Gm2

c

(mp +mc)(1 + δ)

[
2(1 + e−

r
λ )

r
− (1 + δe−

2a
λ )

a

]
. (4.2.9)

Then subbing into 4.2.5:

dτ

dt
= 1− Gmc

rc2
(1 + δe−

r
λ )

1 + δ
− Gm2

c

c2(mp +mc)(1 + δ)

[
(1 + e−

r
λ )

r
− (1 + δe−

2a
λ )

2a

]
.

= 1− Gmc

c2(mp +mc)(1 + δ)

[
(mp + 2mc)(1 + e−

r
λ )

r
− mc(1 + δe−

2a
λ )

2a

]
. (4.2.10)

Here we can ignore any constant terms as they just integrate to be proportional to t and can

then be ignored by scaling t at the end. Then letting σ =
Gmc(mp+2mc)
c2(mp+mc)

and taylor expanding

e−
r
λ = 1− r

λ + r2

2λ2 +O( r
3

λ3 ):

dτ

dt
= 1− σ

r
+

σδ

λ(1 + δ)
− σδr

2λ2(1 + δ)
. (4.2.11)

Just as in section 3.2 we use the eccentric anomaly E to integrate this expression, as r =
a(1− e cosE), ωt = E − e sinE and thus ωdt = (1− e cosE)dE. Thus:

τ =
1

ω

∫ [
1− σ

a(1− e cosE)
+

σδ

λ(1 + δ)
− σδ(1− e cosE)

2λ2(1 + δ)

]
(1− e cosE)dE,

=
1

ω

∫ [
(1− e cosE)(1 +

σδ

λ(1 + δ)
)− σ

a
− σδa(1− e cosE)2

2λ2(1 + δ)

]
dE (4.2.12)

Which becomes:

=⇒ τ =
1

ω
(E − e sinE)(1 +

σδ

λ(1 + δ)
)− σ

ωa
E

− σδa

2ωλ2(1 + δ)
(E − 2e sinE +

e2

2
(E +

1

2
sin 2E)) (4.2.13)

Then converting back to t using t = 1
ω (E − e sinE) and for any singular E terms using

E = ωt+ e sinE:

=⇒ τ = t

(
1 +

σδ

λ(1 + δ)
− σ

a
− σδa

2λ2(1 + δ)
(1 +

e2

2
)

)

−
(
σ

a
− σδa

2λ2(1 + δ)
(1− e2

2
)

)
e

ω
sinE +

σδae2

8λ2ω(1 + δ)
sin 2E (4.2.14)

Re-scaling t to absorb the constants results in:

τ = t−
(
σ

a
− σδa

2λ2(1 + δ)
(1− e2

2
)

)
e

ω
sinE +

σδae2

8λ2ω(1 + δ)
sin 2E (4.2.15)

Notably we can see here that Yukawa like gravity not only predicts an extra term added to the
amplitude of the GR Einstein delay, but also predicts there to be an extra delay proportional
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to sin 2E. Thus the over all modification to the arrival times caused by gravitational red shift
and time dilatation is:

τ = t+ γ1 sinE + γ2 sin 2E (4.2.16)

Where:

γ1 = γGR + γ0 = −Gmc(mp + 2mc)e

c2(mp +mc)aω
+

Gmc(mp + 2mc)eδa

2c2λ2ω(1 + δ)(mp +mc)
(1− e2

2
)

γ2 =
Gmc(mp + 2mc)δae

2

8c2λ2ω(1 + δ)(mp +mc)
(4.2.17)

Thus:

γ1 = −T
2
3
⊙

(
2π

Pb

)− 1
3 mc(mp + 2mc)

(mp +mc)
4
3

e+ T
4
3
⊙ c

2

(
2π

Pb

)− 5
3 mc(mp + 2mc)eδ(1− e2

2 )

2λ2(1 + δ)(mp +mc)
2
3

, (4.2.18)

γ2 = T
4
3
⊙ c

2

(
2π

Pb

)− 5
3 mc(mp + 2mc)δe

2

8λ2(1 + δ)(mp +mc)
2
3

. ■ (4.2.19)
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4.3 Shapiro delay ∆S:

Once again we begin with the modified Schwarzschild metric. Though this time as we are
dealing with the delay in the travel time of light beam, thus the metric becomes light like
meaning: ds2 = 0. Then once again fixing ϕ and θ so that the solid angle is 0 the metric
becomes:

− (1 + 2Φ) c2dt2 + (1 + 2Φ)−1 dr2 = 0,

=⇒
∣∣∣∣drdt
∣∣∣∣ = c (1 + 2Φ) = c

(
1− 2Gmc(1 + δe−

r
λ )

c2|r|(1 + δ)

)
. (4.3.1)

Where M → mc as the gravity well of the pulsar is just a constant and doesn’t contribute to
the spacing of the time of arrivals. Dividing across and taylor expanding as 2Gmc

c2r
is small,

results in:

∣∣∣∣ dtdr
∣∣∣∣ = 1

c

(
1 +

2Gmc(1 + δe−
r
λ )

c2|r|(1 + δ)

)
,

=⇒ tarr − tem =

∫ re(tarr)

rp(tem)

1

c

(
1 +

2Gmc(1 + δe−
r
λ )

c2|r|(1 + δ)

)
|dr| ,

=⇒ tarr − tem =
1

c
(rp(tem)− re(tarr)) +

2Gmc

c3(1 + δ)

∫ re(tarr)

rp(tem)

(1 + δe−
r
λ )

|r|
|dr| . (4.3.2)

Here re is the vector pointing from the origin which is the binary barycenter to the earth,
tem is the time of emission and tarr is the time of arrival. Then once again taylor expanding
e−

r
λ = 1 − r

λ + r2

2λ2 + O( r
3

λ3 ), The integral on the right hand side, which corresponds to the
total Shapiro delay, becomes:

∆S =
2Gmc

c3(1 + δ)

∫ re(tarr)

rp(tem)

(
(1 + δ)

|r|
− δ

λ
+
δ|r|
2λ2

)
|dr| (4.3.3)

From here we can again drop the constant term in the integral. Then changing from |r| to a
function of time, as |r| = |x(t)− rc(tem)|, i.e. |r| is the distance from the path of the light to
the companion star. Here the path of the light x(t) is given by:

x(t) = rp(tem) +
t− tem
tarr − tem

(re(tarr)− rp(tem)). (4.3.4)

Changing to a function of time picks up an extra factor of c as |dr| = cdt. Thus the full
Shapiro delay becomes:

∆S = ∆SGR +
δGmc

c2λ2(1 + δ)

∫ tarr

tem

|x(t)− rc(tem)|dt. (4.3.5)

The calculation of ∆SGR is omitted here but can be found in section 3.3. So in Yukawa
gravity the Shapiro delay is given by:

∆S = ∆SGR +∆SY K . (4.3.6)
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Then again using the substitution θ = t−tem
tarr−tem

the the bounds of the integral now go from 0
to 1, resulting in:

∆SY K =
δGmc(tarr − tem)

c2λ2(1 + δ)

∫ 1

0
|rp(tem)− rc(tem) + θ(re(tarr)− rp(tem))|dθ. (4.3.7)

Then seeing as |re(tarr)− rp(tem)| ≈ c(tarr − tem) and |re(tarr)| ≡ |re| >> |rp(tem)| :

∆SY K =
δGmc|re|
c3λ2(1 + δ)

∫ 1

0
|r+ θre|dθ =

δGmc|re|2

c3λ2(1 + δ)

∫ 1

0
| r

|re|
+ θr̂e|dθ (4.3.8)

Where r = rp(tem)− rc(tem). Then:

∆SY K =
δGmc|re|2

c3λ2(1 + δ)

∫ 1

0

√
θ2 + 2θr̂e ·

r

|re|
+ (

r

|re|
)2dθ.

=
δGmc|re|2

c3λ2(1 + δ)

∫ 1

0

√
(θ + r̂e ·

r

|re|
)2 + (

r

|re|
)2 − (r̂e ·

r

|re|
)2dθ. (4.3.9)

Then letting ku = θ + r̂e · r
|re| , where k

2 = ( r
|re|)

2 − (r̂e · r
|re|)

2 . The integral then becomes:

∆SY K =
δGmc|re|2

c3λ2(1 + δ)

∫
k2
√
u2 + 1du. (4.3.10)

Then letting u = sinhψ, the integral can be solved by:

I =

∫ √
u2 + 1du =

∫
cosh2ψdψ =

∫
1

2
(1 + cosh 2ψ)dψ

=
1

2
(ψ +

1

2
sinh 2ψ) =

1

2
(ψ + sinhψ coshψ). (4.3.11)

Then using the fact that cosh
(
sinh−1 u

)
=

√
u2 + 1 and sinh−1 = ln |u+

√
u2 + 1|. Then:

I =
1

2
u
√
u2 + 1 +

1

2
ln |u+

√
u2 + 1|. (4.3.12)

And thus equation 4.3.10 becomes:

δGmc|re|2k2

c3λ2(1 + δ)

[
1

2
(
1

k
(θ + r̂e ·

r

|re|
))

√
(
1

k
(θ + r̂e ·

r

|re|
))2 + 1

+
1

2
ln

∣∣∣∣∣( 1k (θ + r̂e ·
r

|re|
)) +

√
(
1

k
(θ + r̂e ·

r

|re|
))2 + 1

∣∣∣∣∣
] ∣∣∣∣1

0

=
δGmc|re|2k2

c3λ2(1 + δ)

[
1

2
(
1

k
(1 + r̂e ·

r

|re|
))

√
(
1

k
(1 + r̂e ·

r

|re|
))2 + 1

+
1

2
ln

∣∣∣∣∣( 1k (1 + r̂e ·
r

|re|
)) +

√
(
1

k
(1 + r̂e ·

r

|re|
))2 + 1

∣∣∣∣∣
−1

2
(
1

k
(r̂e ·

r

|re|
))

√
(
1

k
(r̂e ·

r

|re|
))2 + 1

−1

2
ln

∣∣∣∣∣( 1k (r̂e · r

|re|
)) +

√
(
1

k
(r̂e ·

r

|re|
))2 + 1

∣∣∣∣∣
]
.
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Then pulling out factors of k:

∆SY K =
δGmc|re|2

c3λ2(1 + δ)

[
1

2
(1 + r̂e ·

r

|re|
)

√
(1 + r̂e ·

r

|re|
)2 + k2

+
k2

2
ln

∣∣∣∣(1 + r̂e ·
r

|re|
) +

√
(1 + r̂e ·

r

|re|
)2 + k2

∣∣∣∣
−1

2
((r̂e ·

r

|re|
))

√
(r̂e ·

r

|re|
)2 + k2

−k
2

2
ln

∣∣∣∣(r̂e · r

|re|
) +

√
(r̂e ·

r

|re|
)2 + k2

∣∣∣∣+ ln |k| − ln |k|
]
.

Then subbing in for k and imposing |r|
|re| << 1, leaves the only remaining terms to be the

logarithm terms:

∆SY K =
δGmc|re|2k2

2c3λ2(1 + δ)

[
ln |2| − ln

∣∣∣∣r̂e · r

|re|
+

|r|
|re|

∣∣∣∣]

= −δGmc((r)
2 − (r̂e · r)2)

2c3λ2(1 + δ)
ln |r̂e · r+ |r|| . (4.3.13)

Where we have dropped any constant terms to get to the last line. Then seeing as r̂e · r =
|r| sin(i) sin(ω + ϕ) and writing the logarithm term as we did in section 3.3 results in:

∆SY K = −δGmca
2(1− e2)2(1− sin2(ω + ϕ) sin2(i))

2c3λ2(1 + δ)(1 + e cosϕ)

× ln
∣∣∣1− e cosE − sin i(sinω(cosE − e) +

√
1− e2 sinE cosω)

∣∣∣ . (4.3.14)

Then by equations 3.3.16 - 3.3.18 and Kepler’s ellipse equation:

∆SY K = −δGmca
2[(1− e cosE)2 − sin2 i(sinω(cosE − e) +

√
1− e2 sinE cosω)2]

2c3λ2(1 + δ)

× ln
∣∣∣1− e cosE − sin i(sinω(cosE − e) +

√
1− e2 sinE cosω)

∣∣∣ . ■ (4.3.15)

23



5 Examining higher order corrections in GR

Due to the upper bound on λ [7] the corrections to the GR PK parameters are exceedingly
small, smaller in fact then the terms we drop in the derivations of the GR parameters above.
Thus if we wish to tell these deviations apart from those that come from ignoring terms of
similar magnitude in GR, we need to find expressions for the GR PK parameters that only
ignore terms smaller then those of Yukawa gravity corrections.

5.1 Periastron advance ω̇:

We begin by looking at the periastron advance, however there is an immediate problem that
in equation 3.1.16 we the terms of order αu1u0 or higher from the ODE as we make the
assumption that u1 is a small deviation, which is self consistent as it becomes proportional to
α. However attempting to restore just the αu1u0 term to the ODE results in an ODE that is
not solvable by mathematica, preventing any consistent higher order corrections from being
made to the periastron advance. This is not a huge deal as the Yukawa gravity predicts the
same periastron advance formula as GR so it can be left at its current order.

5.2 Einstein delayγ:

For the Einstein delay we can repeat the same method of calculation instead now ignoring
terms any higher than the smallest terms in the equations derived in section 4.2, i.e. ignoring
any terms smaller than γ0 ≈ γ2 ≈ 10−16. We can note that this is ridiculously small, but a
full breakdown of terms to see if deviations of the theories could be seen at the leading order
in Yukawa gravity corrections, is needed.

Through out this derivation we use the fact that GM
rc2

≈ v2p
c2

≈ 10−6. We begin a step on from
the Schwarzschild metric, equation 3.2.3:

c2dτ2 =

(
1− 2Gmc

rc2

)
c2dt2 −

(
v2p +

2Gmcv
2
p

rc2

)
dt2.

= dt2

(
c2 − 2Gmc

r
− v2p −

2Gmcv
2
p

rc2

)
. (5.2.1)

Where vp =
drp
dt , Thus:

dτ

dt
=

√
1− 1

c2

(
2Gmc

r
+ v2p +

2Gmcv2p
rc2

)

= 1− 1

2c2

[
2Gmc

r
+ v2p(1 +

2Gmc

rc2
)

]

− 1

8c4

[
4(Gmc)

2

r2
+

4Gmc

r
(v2p +

2Gmcv
2
p

rc2
) + v4p +

4Gmcv
4
p

rc2
+

4(Gmc)
2v4p

r2c4

]
+O(

v6p
c6

). (5.2.2)

Where we have taylor expanded in the last step. Then dropping more terms:

dτ

dt
= 1− Gmc

rc2
−

v2p
2c2

−
Gmcv

2
p

rc4
− (Gmc)

2

2r2c4
−
Gmcv

2
p

2rc4
−

v4p
8c4

+O(
v6p
c6

). (5.2.3)
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Then using equation 3.2.8, which says:

v2p =
Gm2

c

mp +mc

(
2

r
− 1

a

)
. (5.2.4)

Thus:

v4p =
(Gm2

c)
2

(mp +mc)2

(
4

r2
− 2

ra
+

1

a2

)
. (5.2.5)

Then ignoring constant terms as we have done before, due to the fact that after we integrate
we can re scale t to include any constant terms in the RHS of equation 5.2.3. Then 5.2.3
becomes:

dτ

dt
= 1− Gmc

rc2
− Gm2

c

c2(mp +mc)r
− 3G2m3

c

c4(mp +mc)r2
− 3G2m3

c

2c4(mp +mc)ra

−(Gmc)
2

2r2c4
− G2m4

c

2c4(mp +mc)2r2
+

G2m4
c

4c4(mp +mc)2ra
. (5.2.6)

= 1− 1

r

[
Gmc

c2
+

Gm2
c

c2(mp +mc)
− G2m4

c

4c4(mp +mc)2a
+

3G2m3
c

2c4(mp +mc)a

]
− 1

r2

[
3G2m3

c

c4(mp +mc)
+

(Gmc)
2

2c4
+

G2m4
c

2c4(mp +mc)2

]
. (5.2.7)

We wish to re-arrange to return the original GR parameter plus extra contributions. Thus:

= 1− 1

r

[
Gmc(mp + 2mc)

c2(mp +mc)
+
G2m3

c(6mp + 5mc)

4c4(mp +mc)2a

]

− 1

r2

[
G2m2

c(9m
2
c + 10mcmp +m2

p)

c4(mp +mc)2

]
. (5.2.8)

We can see that the first term will return the delay calculated in section 3.2, we will however,
temporarily combine this term for the sake of brevity. Thus:

dτ

dt
= 1− α

r
− β

r2

Once again to carry out the integral we employ the use of the eccentric anomaly E. r =
a(1 − e cosE), ωt = E − e sinE and thus ωdt = (1 − e cosE)dE. This means the integral
becomes:

τ =
1

ω

∫ [
1− α

a(1− e cosE)
− β

a2(1− e cosE)2

]
(1− e cosE)dE,

=
1

ω

∫ [
1− e cosE − α

a
− β

a2(1− e cosE)

]
dE,

=
1

ω
(E − e sinE − α

a
E)− β

ωa2

∫
dE

(1− e cosE)
. (5.2.9)
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To evaluate this integral we use Weierstrass substitution, that is writing the cosE in terms
of tan E

2 .

I =

∫
dE

(1− e cosE)
=

∫
dE

(1− e
1−tan2 E

2

tan2 E
2
+1

)
=

∫
sec2 E

2 dE

(1 + e) tan2 E
2 + (1− e)

(5.2.10)

Then letting u =
√
1+e√
1−e

tan E
2 , thus dE =

√
1−e√
1+e

2du
sec2 E

2

. Which leads to:

= 2

√
1− e√
1 + e

∫
du

(1− e)(u2 + 1)
=

2√
1− e2

∫
du

u2 + 1
(5.2.11)

This final integral is easily recognised as arctanu. Thus the final solution becomes:

I =
2√

1− e2
arctan

(√
1 + e√
1− e

tan
E

2

)
=

2√
1− e2

arctan

(
1 + e√
1− e2

tan
E

2

)
(5.2.12)

To put this in a form more akin to that of the Yukawa gravity contributions, we consider the
taylor expansion of the above solution to the integral around 1+e√

1−e2
= 1, as we are usually

dealing with small e, thus 1+e√
1−e2

≈ 1 The resulting expansion, letting x = 1+e√
1−e2

is:

arctan

(
x tan

E

2

)
= arctan

(
tan

(
E

2

))
+

(x− 1) tan
(
E
2

)
tan2(E2 ) + 1

−
(x− 1)2 tan3(E2 )(
tan2(E2 ) + 1

)2
+
(x− 1)3 tan3(E2 )

(
3 tan2(E2 )− 1

)
3
(
tan2(E2 ) + 1

)3 −
(x− 1)4 tan5

(
E
2

) (
tan2

(
E
2

)
− 1
)(

1 + tan2
(
E
2

))4
+

(x− 1)5 tan
(
e
2

)( 16 tan8( e
2)

(1+tan2( e
2))

4 − 12 tan6( e
2)

(1+tan2( e
2))

3 +
tan4( e

2)
(1+tan2( e

2))
2

)
5
(
1 + tan2

(
e
2

))

+

(x− 1)7 tan
(
e
2

)( 64 tan12( e
2)

(1+tan2( e
2))

6 − 80 tan10( e
2)

(1+tan2( e
2))

5 +
24 tan8( e

2)
(1+tan2( e

2))
4 − tan6( e

2)
(1+tan2( e

2))
3

)
7
(
1 + tan2

(
e
2

))
+

(x− 1)6 tan
(
e
2

)(
− 32 tan10( e

2)
(1+tan2( e

2))
5 +

32 tan8( e
2)

(1+tan2( e
2))

4 − 6 tan6( e
2)

(1+tan2( e
2))

3

)
6
(
1 + tan2

(
e
2

))
+

(x− 1)8 tan
(
e
2

)(
− 128 tan14( e

2)
(1+tan2( e

2))
7 +

192 tan12( e
2)

(1+tan2( e
2))

6 − 80 tan10( e
2)

(1+tan2( e
2))

5 +
8 tan8( e

2)
(1+tan2( e

2))
4

)
8
(
1 + tan2

(
e
2

))
+O

(
(x− 1)9

)
(5.2.13)

Here if we consider e ≈ 10−1, then (x−1) ≈ 10−1. Then if we consider β
a2

≈ v4p
c4

≈ 10−12 and the

orbital period Pb to be on the order of roughly 0.1 days, then ω ≈ 10−4 and thus β
ωa2

≈ 10−8.
So in order to obtain the same order as that predicted in section 4.2 for Yukawa gravity we
keep only terms larger than O

(
(x− 1)9

)
≈ 10−9. Using mathematica this expansion can be

simplified to:
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E

2
+
1

2
(x−1) sin(E)− 1

4
(x−1)2 sin(E)+

1

8
(x−1)3 sin(E)− 1

16
(x−1)4 sin(E)+

1

32
(x−1)5 sin(E)

− 1

64
(x−1)6 sin(E)+

1

128
(x−1)7 sin(E)− 1

256
(x−1)8 sin(E)+

1

8
(x−1)2 sin(2E)−1

8
(x−1)3 sin(2E)

+
3

32
(x−1)4 sin(2E)− 1

16
(x−1)5 sin(2E)+

5

128
(x−1)6 sin(2E)− 3

128
(x−1)7 sin(2E)+

7

512
(x−1)8 sin(2E)

+
1

24
(x−1)3 sin(3E)− 1

16
(x−1)4 sin(3E)+

1

16
(x−1)5 sin(3E)− 5

96
(x−1)6 sin(3E)+

5

128
(x−1)7 sin(3E)

− 7

256
(x− 1)8 sin(3E) +

1

64
(x− 1)4 sin(4E)− 1

32
(x− 1)5 sin(4E) +

5

128
(x− 1)6 sin(4E)

− 5

128
(x− 1)7 sin(4E) +

35(x− 1)8 sin(4E)

1024
+

1

160
(x− 1)5 sin(5E)− 1

64
(x− 1)6 sin(5E)

+
3

128
(x− 1)7 sin(5E)− 7

256
(x− 1)8 sin(5E) +

1

384
(x− 1)6 sin(6E)− 1

128
(x− 1)7 sin(6E)

+
7

512
(x−1)8 sin(6E)+

1

896
(x−1)7 sin(7E)− 1

256
(x−1)8 sin(7E)+

(x− 1)8 sin(8E)

2048
(5.2.14)

Then dropping a few terms that have factors that make them smaller then the limit results
in:

I =
2√

1− e2

[
E

2
+

1

2
(x− 1) sin(E)− 1

4
(x− 1)2 sin(E) +

1

8
(x− 1)3 sin(E)− 1

16
(x− 1)4 sin(E)+

1

32
(x− 1)5 sin(E)− 1

64
(x− 1)6 sin(E) +

1

8
(x− 1)2 sin(2E)− 1

8
(x− 1)3 sin(2E)

+
3

32
(x− 1)4 sin(2E)− 1

16
(x− 1)5 sin(2E) +

5

128
(x− 1)6 sin(2E) +

1

24
(x− 1)3 sin(3E)

− 1

16
(x− 1)4 sin(3E) +

1

16
(x− 1)5 sin(3E)− 5

96
(x− 1)6 sin(3E) +

1

64
(x− 1)4 sin(4E)

− 1

32
(x− 1)5 sin(4E) +

5

128
(x− 1)6 sin(4E) +

1

160
(x− 1)5 sin(5E)− 1

64
(x− 1)6 sin(5E)

]
(5.2.15)

Subbing back in, with x = 1+e√
1−e2

. Results in:

I =

 E√
1− e2

+ sinE

(e− 2)
(√

1− e2 − e− 1
)(

−9e2 + 7
√
1− e2e− 14

√
1− e2 + e+ 10

)
8(e− 1)3(e+ 1)

√
1− e2



− sin 2E


(√

1− e2 − 1
)(

e2 − 14
√
1− e2e+ 28

√
1− e2 + 26e− 32

)
8(e− 1)3

√
1− e2



+sin 3E


(√

1− e2 − e− 1
)3 (

14e2 + 21
√
1− e2 − 5e− 19

)
24(e− 1)3(e+ 1)2

√
1− e2


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+sin 4E


(
−
√
1− e2 + e+ 1

)4 (
7
√
1− e2 + 3e− 8

)
32(e− 1)3(e+ 1)2

√
1− e2



+sin 5E


(
7− 5(e+1)√

1−e2

)(
e+1√
1−e2

− 1
)5

160
√
1− e2


 (5.2.16)

For the sake of brevity we label these functions of e as f1(e), f2(e)... etc. Now we wish to put
this all together, so equation 5.2.9 after subbing in ωt = E − e sinE once again becomes:

τ =

(
1− α

a
− β

a2
√
1− e2

)
t+

(
α

ωa
+

β

ωa2
(

1√
1− e2

− f1(e))

)
sinE

− β

ωa2
[−f2(e) sin 2E + f3(e) sin 3 + f4(e) sin 4E + f5(e) sin 5E] . (5.2.17)

Which re-scaling t becomes:

τ = t+

(
α

ωa
+

β

ωa2
(

1√
1− e2

− f1(e))

)
sinE

+
β

ωa2
[f2(e) sin 2E − f3(e) sin 3− f4(e) sin 4E − f5(e) sin 5E] . (5.2.18)

We can write this then as:

τ = t+ γ1 sinE + γ2 sin 2E + γ3 sin 3E + γ4 sin 4E + γ5 sin 5E (5.2.19)

Where if we were to separate the original GR term, we would see that γ1 = γGR + γ0, where
γ0 is made of various other small terms.

What this analysis shows is that at the same order we begin to see terms from Yukawa gravity,
GR predicts a whole host of higher frequency terms. It can also be noted that the factors
of the sinE and sin 2E, terms predicted by Yukawa gravity have terms from GR that are
larger and thus would be far more noticeable. the Yukawa terms are of order 10−16, where
as extra GR corrections are as large as 10−8 and as small as 10−16, compared to the original
GR terms of order 10−6. This is further evidence that Yukawa gravity does not deviate from
GR enough in the regime of Solar system size systems, to be noticed in the measurements of
post Keplerian parameters.

28



5.3 Shapiro delay ∆S:

Finally we look at adding higher order corrections to the Shapiro delay. To account for
corrections of similar magnitude to the corrections derived under Yukawa gravity in section
4.3, we look at the next leading term in the taylor expansion carried out in equation 3.3.2.
Which now becomes:

∣∣∣∣ dtdr
∣∣∣∣ = 1

c

(
1 +

2Gmc

c2|r|
+

4(Gmc)
2

c4|r|2

)
+O

(
(
2Gmc

c2|r|
)3
)

(5.3.1)

Integrating the first two terms returns the Shapiro delay calculated in section ??, so we will
just focus on integrating the last term.

tarr − tem =
1

c
(rp(tem)− re(tarr)) + ∆SGR +

∫ re(tarr)

rp(tem)

4(Gmc)
2

c5|r|2
|dr| . (5.3.2)

We follow the same procedure as section 3.3. Writing |r| as |x(t)− rc(tem)|, where x(t) is the
same as equation 3.3.6 and switching to integrating over time ( |dr| = cdt ). Once again we
use the substitution θ = t−tem

tarr−tem
, making the bounds of the integral go from 0 to 1. Thus:

∆S = ∆SGR +
4(Gmc)

2

c4

∫ 1

0

(tarr − tem)dθ

|rp(tem)− rc(tem) + θ(re(tarr)− rp(tem))|2
. (5.3.3)

Then seeing as |re(tarr)− rp(tem)| ≈ c(tarr − tem) and |re(tarr)| ≡ |re| >> |rp(tem)| :

∆S ≈ ∆SGR +
4(Gmc)

2

c5|re|

∫ 1

0

dθ

| r
|re| + θr̂e|2

=
4(Gmc)

2

c5|re|

∫ 1

0

dθ

θ2 + 2θr̂e · r
|re| + ( r

|re|)
2
. (5.3.4)

Where r = rp(tem)− rc(tem). Then:

∆S = ∆SGR +
4(Gmc)

2

c5|re|

∫ 1

0

dθ

(θ + r̂e · r
|re|)

2 + ( r
|re|)

2 − (r̂e · r
|re|)

2
. (5.3.5)

Then using the substitution θ + r̂e · r
|re| = ku, where k2 = ( r

|re|)
2 − (r̂e · r

|re|)
2. Leads to:

∆S = ∆SGR +
4(Gmc)

2

c5|re|

∫ 1

0

kdu

k2(u2 + 1)
= ∆SGR +

4(Gmc)
2

c5|re|k
arctan(u)

= ∆SGR +
4(Gmc)

2
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√
r2 − (r̂e · r)2

arctan

(
1

k
(θ + r̂e ·

r

|re|
)

) ∣∣∣∣1
0

= ∆SGR +
4(Gmc)

2
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√

r2 − (r̂e · r)2

[
arctan

(
|re|+ r̂e · r√
r2 − (r̂e · r)2

)
− arctan

(
r̂e · r√

r2 − (r̂e · r)2

)]

≈ ∆SGR +
4(Gmc)

2
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√
r2 − r̂e · r2

[
arctan

(
|re|√

r2 − r̂e · r2

)
− arctan

(
r̂e · r√

r2 − r̂e · r2

)]
(5.3.6)

and since |re| >>
√
r2 − r̂e · r2:

∆S ≈ ∆SGR +
4(Gmc)

2

c5
√
r2 − r̂e · r2

[
π

2
− arctan

(
r̂e · r√

r2 − r̂e · r2

)]

∆S = ∆SGR+
4(Gmc)

2(1 + e cosϕ)

ac5(1− e2)
√

(1 + sin2(i) sin2(ω + ϕ))

[
π

2
− arctan

(
sin(i) sin(ω + ϕ)√

1− sin2(i) sin2(ω + ϕ)

)]
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This is as far as we can reduce this equation. What can be noticed is that this addition is of
order ≈ 10−12 compared to the extra addition from Yukawa gravity of 10−16. So it would be
more noticeable, though still small compared to the original GR term, ∆SGR ≈ 10−5.

6 Conclusion

In conclusion a thorough investigation into the GR PK parameters and their derivations was
carried out. Effective code was developed to produce mass-mass diagrams for given pulsar data
and confirm GR’s description of binary pulsars. This was aided by tempo2’s fitting of the PK
parameters. Analysis of the PK equations of Yukawa-like gravity revealed extra contributions
to the parameters, though it was concluded it would be difficult to accurately test this theory
of gravity with binary pulsars as the contributions were of smaller order than the order set out
to calculate the GR parameters. Further analysis of GR PK equations revealed more terms
that were larger or equal to in magnitude to the contributions from Yukawa gravity. This
makes it even harder for Yukawa gravity to be tested and further diminishes the possibility
of its testing in this regime. Far more accurate measurements of pulsars would be needed to
come to a more concrete conclusion on Yukawa gravity.

30



References

[1] Roger Blandford and Saul A Teukolsky. “Arrival-time analysis for a pulsar in a binary
system.” In: Astrophysical Journal, Vol. 205, p. 580-591 205 (1976), pp. 580–591.

[2] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.

[3] Giuseppe D’Orio. Pulsar timing. Accessed: june 2023.

[4] M Kramer et al. “Strong-field gravity tests with the double pulsar”. In: Physical Review
X 11.4 (2021), p. 041050.

[5] Duncan Ross Lorimer and Michael Kramer. Handbook of pulsar astronomy. Vol. 4. Cam-
bridge university press, 2005.

[6] Norbert Straumann. General relativity. Springer Science & Business Media, 2012.

[7] Clifford M Will. “Solar system versus gravitational-wave bounds on the graviton mass”.
In: Classical and Quantum Gravity 35.17 (2018).

31


	Introduction
	Mass-Mass diagrams
	General Relativity
	Periastron advance : 
	Amplitude of Einstein delay :
	Shapiro delay S:
	Shapiro shape, range and the binary mass function:

	Yukawa addition to General Relativity
	Periastron advance :
	Amplitude of Einstein delay :
	Shapiro delay S:

	Examining higher order corrections in GR
	Periastron advance :
	Einstein delay:
	Shapiro delay S:

	Conclusion

