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Abstract

We investigate how the Keplerian parameters of a binary system containing a pulsar and a
companion star, change in time. This timing model is parameterized by the post Keplerian
parameters. These parameters are then used to combine measurement and theory in mass-
mass diagrams that provide accurate tests of any given theory of gravity. This is based on
the crossing of the post Keplerian parameter curves in the mass-mass space. The theories of
Gravity tested were General Relativity and Yukawa like addition to General Relativity. This
report contains the derivations for all the parameters for both these theories, correct up to the
same order. For General Relativity it was confirmed that this theory passes the mass-mass
diagram tests with ease, where as for Yukawa gravity it was shown that the theory does not
differ significantly enough on this scale to show meaningful difference from GR under current
measurement capabilities.
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1 Introduction

Pulsars are rapidly-rotating and highly-magnetised neutron stars that emit radiation from
their poles. Pulsars are useful as they provide tests of strong-field gravity in ways impossible
on Earth-bound laboratories or even in our Solar system. The pulsars of interest are found
in binary systems meaning they have a companion star. To fully describe a binary system 6
parameters known as Keplerian parameters are needed. Tests of the theories of gravity are
carried out by examining deviations from the Keplerian description on a mass diagram. Due
to various effects of gravity Keplerian parameters are not stable in time. This is very evident
in pulsar binaries. Here the timing model of how the system changes is parameterized by post
Keplerian (PK) parameters [4].

e w the periastron advance
e B, the orbital decay
e v Einstein delay
e 7 Shapiro range

e s = sin(i) Shapiro shape

These parameters can be expressed purely as functions of the mass of the pulsar m, and its
companion m, [5]:

_1
277) 3 Me(my+2me)

!
(mp+me)3

o r="Tym,

Pb me
5 )
p __@Tg or ) 3 (1+(3)e+(3D)et)  mpme
*Hh="7510\hp 7 I
b (1—e2)2 (mp+me)3

These parameters allow one to create mass-mass diagrams for several pulsars, providing a
method of testing a given theory based on the fact that all the parameter curves must cross
at the same point. For NV measured parameters the mass-mass diagram provides N — 2 tests
of the given theory of gravity. To no surprise GR passes these tests with flying colours. See
Figures [1| and [2| below. These mass-mass diagrams were developed with code that can be
found at: https://github.com/Tbrosnanl2/Hamilton-trust-2023.

Derivations of most of these parameters were not easily available in any publication I could
find. So, time was spent carefully deriving the above expressions and compiling them all in
one place to avoid such an issue for anyone else. These derivations are shown in this report
below, though the proof of P, is omitted as it far longer and more complicated then the other
expressions.


https://github.com/Tbrosnan12/Hamilton-trust-2023

2 Mass-Mass diagrams

Mass-mass diagram for J0737-3039A
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Figure 1: Full mass-mass diagram, masses are in units of Mg
Mass-mass diagram for J0737-3039A
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Figure 2: Zoomed in mass-mass diagram, highlighted area is allowed range for the binary
masses



These Mass-Mass diagrams are contour plots of all the allowed pair values of m, and m, that
give rise to the actual values of the PK parameters that are physically measured by analysing
real pulsar data.
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Figure 3: This shows the pulsar timing residuals in the tempo2 software

The tempo2 software allows you to interpret the pulsar data, which initially is just a list of
time of arrivals (TOAs), time stamps for when the pulse from the pulsar was received. From
this tempo2 creates a model for the pulsar’s parameters and plots the difference between the
model and the actual TOAs. These are the timing residuals. Then the software can using
fitting methods to fit for values of the various pulsar parameters, such as Keplerian, post
Keplerian and many more. All of this reduces the residuals until they look like Figure[3l The
tempo2 software is used to fit binary pulsars for their PK parameters and these values are
then used to create mass-mass diagrams as shown in Figures |I| and



3 General Relativity

Here we provide the full derivations of the post Keplerian parameters that determine the
timing model for how a pulsar in a binary with a companion star changes in time due to
carious effects of gravity. The first section derives these equations using the Einsteins general
relativity.

3.1 Periastron advance w:

For this derivation all though there is no explicit derivation that can be found anywhere online,
it is pretty evident that this equation for the periastron advance we show at the end follows
naturally from the equation used to predict the precession of mercury. Thus we follows Sean
Carroll’s approach from his book, ”Spacetime and geometry” [2].

Einsteins field equations have an exact solution when considering a spherically symmetric star
of mass M. This results in the Schwarzschild metric:

2GM 2GM\ !
g=ds*=—-c*dr’ = — (1 - Gcz ) dt* + (1 - fc? ) dr®+r2(d6*+sin? 0d¢?). (3.1.1)
T

Then using the fact that the action of a relativistic point particle is:
S = —mc2/d7'. (3.1.2)

With the definition of proper time 7 as dr? = —C%gw,x“x”, integrating along the path of this
point particle results in:

1 /! dzt dxv
= - dM /| —qu—— ——. 3.1.3
TTe /0 Tmr=an "an (3.1.3)
Thus the action becomes:
1 dzt dxv
S =— dM /| —qu—— ——. 3.1.4
me /0 I =an "dx (3-14)

Letting G = 4/ —gw‘?—;%f and noting that if the Lagrangian is defined as £ = G2 then
varying the action results in the same geodesic equation , since an extremum of G must be
an extremum of £, due to: £ = 2GdG. This means for the Schwarzschild metric along with
Restriction that this is a Binary system, i.e. we let § = 7/2. The Lagrangian is:

—1
L= (1 - QGM) At — (1 — 2GM> 2 — 122, (3.1.5)

rc? rc?

Here still over-dots denote derivative with respect to A. Both t and ¢ are cyclic so the Lagrange
equations are:

c2r

a <‘9ﬁ> _0 — p= L5 <1 . 2GM> 2. (3.1.6)



d (0L _ 1oL o,
CM((%)_O: =29 _ 2 (3.1.7)

There is also the constraint that the metric —g,, xH2? = —u,u? = 2, (letting A — 7), a

constant. Thus since £ = ¢2:

2
_E2 + 732 + (1 _ W) <L + 02> = 0. (3.1.8)

c2r r2

Then letting £ = % this takes the form:

1
57’«2 +V(r)=¢& (3.1.9)
. Where:
2 GM L* L*GM
Using:
dr\* _ (do\* (dr\® _ I (dr)’ (3.1.11)
dr) — \dr dp) — rt \do) ° o
Then becomes:
dr\? &t 2GMrd ,  —2GMr 2%
— —_ = = . 112
<d¢> + 73 2 Tt 2 (3 )
2 2 2
Using the substitutions u = GI]"ZT == ‘é—;f = —GLTQTQ = <g—;> = (Zl%) (G%TZ)) . Thus:

2 272 233 2
@2) L e AGM)E 2L (3.1.13)

(GM)? c2L? (GM)2’
Differentiating with respect to ¢ results in the following after canceling all the factors of g—;:

(3.1.14)

In Newtonian mechanics the term on the RHS is 0, so to solve this problem in GR we consider
u to be the Newtonian solution plus a small deviation. Thus u = ug 4+ u1. Then:

d2
W?IQO—I-FU():O. (3.1.15)
Then letting o = %:
d*uy 2 2
W—i—ul :auo—i—(’)(a ) (3.1.16)

Where we have dropped the two terms on the RHS with w1 in them as u; is small and so is
the factor of a. This assumption that u; = «, is self consistent as can be seen in the equation



below where the solution to u; is proportional to a. The first ODE’s solution is well known:
ug = 1 + ecos ¢. Subbing this in to the second ODE results in:

—F Tur =«

d?u?
d¢?

1 1
1+ 5e2+2@sinqs+ 562 coszqs]. (3.1.17)

To which one solution can be obtained courtesy of mathematica:

1 1
U= [1 + 562 + epcosp — 662 cos 2¢] . (3.1.18)

The only non-periodic term here is e¢ cos ¢,:

u =14 ecos o+ aepsin ¢. (3.1.19)

Then assuming « is small as it is for pulsars the orbit equation becomes:

L2
"= GM(1+ ecos((1 —a)p))
As then a¢ ~ sina¢ and 1 = cosa¢. Thus if we measure from periastron to periastron, r

starts at a minimum when ¢ = 0 and returns to this minimum when cos((1 — a)¢) =1 =
(1 — )A¢ = 27. Thus the precession of the angle is:

+ O(a?). (3.1.20)

2
=21 + 21+ O(a?) = 21a + O(a?) = bm(GM)” + O0(a?). (3.1.21)

2T
AP = c2L?

Cl-«

Since L? ~ GM(1 — €?)a and P? = 483‘}3 and in the case that ¢ is the periastron angle w.

Then w = %:’ and thus:

. 3(2m)3(GM)?/3
P;/302(1 —e?) ‘
Here M = mj, + m, i.e. is the total mass of the system and if we use mass units of the sun

(Mg ) and the variable Ti, = Mo | we get:

3

(3.1.22)

3(27T)5/3Té/3(mp + me)%/?
P31 —¢2) '

w =

| (3.1.23)



3.2 Amplitude of Einstein delay ~:

To derive this equation we follow the approach by Blanford and Teuklosky laid out in [1].
Though the approach laid out in this article is not complete and skips many important steps.

For the Einstein delay Just as above we start with the Schwarzschild metric, choosing again
to set # = m/2 and also choosing some constant value for ¢ as the equations we need have no
¢ dependence. Thus d¢ = 0 and the metric becomes:

2GM 2GM\
ds? = —c2dr? = — (1 _ > Adt® + (1 _ 2 > dr?. (3.2.1)

rc2 rc2

Seeing as we are dealing with the motion of a pulsar the gravitational field effect it feels
comes from the companion star thus, M — m. and r in the denominator of the potential is
the distance between the two pulsars, where as the r in dr is the distance from the pulsar to
the barycenter r,. Also for this system since all the masses are on the order of solar masses

2
we can consider the quantity %\2/[ ~ Z—g ~ 107 is small, where vp = %”, is the velocity of the

pulsar in the binary. Then taylor expanding:

2Gm 2Gm vl
252 c\ 27,2 c P 2

—codr? = — <1 S~ ) c“dt” + (1 + o2 + 0(04)> dr,. (3.2.2)
. _drp.
Then using v, =

2 . 2Gm 2
Adr? = <1 — GZL > Adt? — (vf, +— p> dt?. (3.2.3)
rc rc

2
Here we can drop the last term in the last bracket as %‘24 ~ ng ~ 1075. Thus:

2Gm vl
27 2 2 2 c 2 P
dr =dt - = o= . 3.2.4
cedr <c . v, + (02 )) ( )
Then:
dr \/ 1 2Gm, Gme v2 vl
1= 2) =1 — - L2 4L 02 3.2.5
dt 62( r + ) rc2 202+ (04) ( )
Then we use the fact that the total energy of a binary system is given by:
1 Gm,m
E=_mw?* - —2° 3.2.6
S HY . (3.2.6)
Where r and v represent the relative displacement and velocity. There is no GR term in this
equation as it is very small compared to the Then using the fact that £ = — Gn;zmc, where a
is the relative semi-major axis, we can express the velocity as:
G 2 1 2 1
v2 _ mpMec ( _ ) _ G(mp + mc) ( _ ) . (327)
I roa roa



Relations like F = —Gn;’;mc remain the same as in the Keplerian case as the contributions
from GR are small enough to be ignored. This is equivalent to deriving these relations from

equation [3.1.20, Then since 7, = —£-r, then v, = —£-v. So:
P P

Gm? (2 1
vy = ——C— ( - ) : (3.2.8)

mpy+me \7  a
This means equation becomes the following;:

dr 1 Gm, Gm?
dt re2  c(my + me)r
—1- G;nc (1 4T ) —1- G;nc (mp * 2mc> . (3.2.9)
c4r Mp + Me c4r Mp + Me

Here we have dropped any constant terms as they end being proportional to t once we integrate
and can then be dropped by the re-scaling of t. To integrate this expression we consider how
r and t relate to the eccentric anomaly E. r = a(l — ecosE), wt = F — esin ' and thus
wdt = (1 — ecos E)dE. This means the integral becomes:

1 G 2
T = / 1-— Me mp + ZMe (1 —ecos E)dE,
w ac?(1 —ecos E) my + m,

—1/ 1—ecosE—Gmcmp+2mC dFE
w ac? my,+me

Gmemy + 2m,

1
= 7=—(F—esink - —5
w acs My + me

B)

Gmemy + 2m, Gme mp + 2m

E—t

T=1— 5 3
wac mp + Me wact mp + Mme

esin B (3.2.10)

Where we have gotten rid of the last term as the time ¢ can be re-scaled to get rid on tshe
factor that is introduced from subbing in F = wt + esin £ . Then seeing as Pb2 = 45 7
w = %:, (M = my+m,) and once again taking the masses to be in units of solar masses. The

amplitude of this change in the Einstein delay is:

1

2 /27\ "3 92

y =13 <ﬂ> me(my + 2me) - (3.2.11)
By (mp + me)3

10



3.3 Shapiro delay AS:

To derive the Shapiro delay we again took inspiration from [1], though the derivation in this
article is very incomplete. The derivation found in [6] was also useful but again lacked some
key steps we outline below.

Once again we begin with the Schwarzschild metric. Though this time as we are dealing
with the delay in the travel time of light beam, thus the metric becomes light like meaning:
ds? = 0. Then once again fixing ¢ and 6 so that the solid angle is 0 the metric becomes:

2GM oGM\ L
-\ cdt’ + {1 - dr? = 0, (3.3.1)
r|c? BE
dr 2G'm dt 1 2G'm 2Gm
—l=cll-—7%—+) = ||=-(1 °)+o0 ©)2 3.3.2
dt c( c2|r| ) dr c ( . || )+ (( 2r ) ) ( )

Where M — m, as the gravity well of the pulsar is just a constant and doesn’t contribute
to the spacing of the time of arrivals. Integrating from the time of emission t,, to the time
of arrival t,,.., results in the total time take for the light beam to travel from the pulsar to
earth. Here the RHS of the above equation when divided across has been taylor expanded as

2Gme ig small.
c°r

re(tarr) 1 2G
tarr — tem :/ - (1 + m) \dr| . (3.3.3)

(tem) € cr|

Here r. is the vector pointing from the origin which is the binary barycenter to the earth.
Then:

re(tu.r'r)
tar’r‘ - tem = %(rp(tem) - re(tarT>) + M/ <1) ‘dI‘| . (334)

3
¢ p(tem)

The last term of the RHS of this equation corresponds to the Shapiro delay, which when

considering r as a function of time and thus picking up an extra factor of ¢ as |dr| = cdt
becomes:
2G tarr dt
AS = ;nc + const. (3.3.5)
¢ tem  1X(t) — Te(tem)]

The |r| here has become the distance between the light beam and the companion mass. Here
x(t) is the straight line path that the light travels and is given by:

X(t) = I'p(tem) + ﬂ(re(tarr) - rp(tem))- (336)

tarr - tem

t—tem

tarr—tem

Using the substitution 6 = , the bounds of the integral now go from 0 to 1. Then:

2G'm, /1 (tarr — tem)dO
AS = . 3.3.7
c? 0 |tp(tem) — re(tem) + 0(re(tarr) — rp(tem))l ( )

Then seeing as [re(tarr) — rp(tem)’ ~ C(tarr — tem) and [re(torr)| = [re| >> ‘rp(tem” :

11



2Gm, de 2G c de
AS ~ 29T / m / . (3.3.8)
c “r | +0re‘ \/92+20re' ? (m)2
Where r = rp(tem) — re(tem). Then:
2Gm,. [* de
== / . . (3.3.9)
0 SO+ G2 ()2 = (Fe - y)?
Then using the substitution 6 + - - |r = = ksinh(¢), where k? = (‘rl”e|)2 — (Te - ﬁ)Z
2G'm, h(1 _ 2Gm, 1 !
Gm /  cos Gme o=t (2045 )| . (3.3.10)
2 c3 k rel
k4/1 + sinh*( 0
Then using the fact that sinh ™! (u) = In (\/ u? +1+ u):
2Gm r r r r !
AS = — C(ln‘\/(ﬁ—kf'e-)?—k()?—(fe — )2 4+0+r. — —lnk\)
3 re| |re| Ire| |re| 0
(3.3.11)
Then expanding the inside of the square root and imposing the bounds:
14 2r, - + ( ) +r.- +1
2Gm, re re re
AS =T \/ r * (e 2 (3.3.12)

c3 |1"|

Here k is a constant so we have lost the last term in [3.3.11] Then dropping the terms in the
square root with |r.| in the denominator and imposing once again that |r.| >> |r|, results in:

2G'm, 2Gme <
= In

c3

2|r.|
r|+1Tc-r

1

AS ~
e[ + [r]sin(é) sin(w + )

c3

' +ln2|re|> . (3.3.13)

Here we can drop the constant term once again. Then using Kepler’s ellipse equation to write
|r| and once again dropping the constant factor of In |al:

AS ~

2G'm, n 1+ ecos(¢) ‘ (3.3.14)

3 ‘ (1 —e2)(1 + sin(4) sin(w + ¢))

Here we have used the fact that r.-r = |r|sin(¢) sin(w + ¢), as the dot product is the projection
of r onto r., scaled by |r|. Then:

AS = —

2Gm, I ' (1 —€2)(1 + sini(sinw cos ¢ + coswsin ¢)) ' . (3.3.15)

c? 1+ ecoso

Where we have expanded sin(w + ¢) and flipped the fraction. Next we introduce again the

eccentric anomaly E. Which is related to the phase angle ¢ by: cos E = 16;0355(25 and sin £ =
V1 in ¢
1+eecossl<;§ ’ Thus:
2 1— 2
1—ecosBE=1-2 Tecosé ¢ (3.3.16)

l+ecos¢p 1+ecose’

A-)6nd) T aang (3.3.17)

1+ ecoso

12



and: o 2) )
cosop(l —e 1—e cosE —e
F—-e=—"——= = . 3.3.18
o8 c 1+ cos¢ — 1+ecoso cos ¢ ( )

Thus plugging into ?7:

2G'm,.
3

AS =

In|l—ecosFE —sini(sinw(cos E —e) + /1 — €2 sinEcosw)‘ B (3.3.19)

3.4 Shapiro shape, range and the binary mass function:

The Shapiro delay is parameterised by the Shapiro range r and the Shapiro shape s. Where:

G

r= ZLC = Teome, (3.4.1)
c

s =sini. (3.4.2)

To find the from of s we derive the binary mass function f(m., my). We start with the semi-
major axis of the relative orbit a, which can be written in terms of the semi-major axis of the
pulsar and it’s companion by: a = a, + a.. The total mass of the system is M = m, + m,.
and by definition of center of mass mya, = mca.. This leads to:

m ap,M
=ap(l4+—2L)=-2 3.4.3
0= (L4 1) = (3.43)
Inserting this into Kepler’s law:
aar = AT (3.4.4)
= mipE 4.

Then defining the projected semi-major axis as © = apsiné, The binary mass function be-
comes:

(mesini)®  4n223
) = - _ 3.4.5
f(m mp) (mc 4 mp)2 TGsz ( )
Thus: ) ,
1 /97\ 3 E
s =sini =17 (PD :c(mp;m)?' ] (3.4.6)

13



4 Yukawa addition to General Relativity

The simplest way to modify GR is to generalize the Einstein - Hilbert action by changing
from just the Ricci scalar to an arbitrary function of the Ricci scalar f(R), with the simple
condition that in the weak field limit the theory tends towards GR. This is preferred over
alternate theories that have to produce ad-hoc mechanisms to explain the lack of evidence in
Solar system environments. f(R) gravity results in a Yukawa-like term being added to the
gravitational potential de~x. Here ) is the scale length of the theory and must very large in
order to reduce to GR in the weak field regime and § the strength of this theory. Modifying
the Einstein-Hilbert action leads to:

S = /\/?gf(R)d‘*erSm. (4.0.1)

This then leads to a slightly changed Schwarzschild metric that takes the following form:

v ro\ 1
A A
g=- (1 - Qiy ( Ifa )> Adt? + (1 - 2552” c Tf’é )> dr? +12dQ2. (4.0.2)
From here the new PK parameters can be derived, However since through methods like
gravitational wave detection, a lower bound of A > 1.6 x 101® m has been set [7]. Thus it will
often be necessary to taylor expand the exponential term. The calculation of this metric can
be found in [3]. Also in this masters thesis is the derivation of the Einstein and Shapiro delay
in Yukawa gravity though the approach is slightly different to the one we take below.

4.1 Periastron advance w:

Just as we did in section we start with a metric, which in this case is the above Yukawa
metric . Then as we did before letting the Lagrangian £ = —gw%% and setting
0 = 75, results in:

L= (1420) — (1428) 172 — 1242 (4.1.1)
Where: ,
~ GM (1+de x)
R B B (4.1.2)

Both ¢ and ¢ are cyclic so the Lagrange equations become:

d (oL _ 1oL 2;

d/\<8i>_0:>E:26i_(1+2<I>)ct. (4.1.3)
4 <6£,) =0 = L= —1% =% (4.1.4)
dX \ 8¢ 20¢

Thus, subbing these back into the Lagrangian and letting A — 7 such that £ = ¢?, results in:

1 E? 1

(14 2®)L2
2c? ’

52 (4.1.5)

14



Then letting £ = % this takes the form:

1
57‘"2 +V(r)=E. (4.1.6)
. Where:
@ GM(1+de”x) L* L2GM((1+ de™%)
Vir)= — — — — 4.1.7
() 2 r(1+46) o 2r3(1+0) ( )
Using:
dr\*_ (do\*(dr\*_L* (dr\’ (4.1.8)
dr) — \dr dp) i \dp) o
Then [4.1.6] becomes:
dr\* At 2GM(1+ de R ) —2GM(1+de X)r 26
i P ( = L 2( e _ - (4.1.9)
do L (1+6)L 2(1+496) L
2 2 2
Using the substitutions u = GI]’\ZT = fl—;‘ = _Gﬁﬂ = (g—;) = (g—“) (G]g{z) . Thus:
2 2
du\? PS¢ + Je~ @ Yu L2 2GM20 + e e )ub 2612 (41.10)
do (GM)2 (1+90) c2L2(1+6) (GM)2T T
Differentiating and canceling all the factors of 2 (%):
L2 L2
dPu gy A deTene) e~ crrxa L2
de? 1494 GMM1+9d)u
L? L2
3(1 + de” @ )(GM)*u?  de” @ GMu (4.1.11)

c2L2(1+9) + Ac2(1+90)

Now to simplify this ODE taking advantage of the lower bound of A\, we can taylor expand
2
the exponential terms. e~ G 01— @(%) + (15522)2 (%)%. Here we have also used the low

eccentricity approximation that L? ~ aGM (1 — €2?). Thus the ODE becomes:

—e2) /a —e2)2 4 —e2) 1 a —e2)2 .,
du_ (480 2%+ HEEG)) | 00— PG + SRR ()M
de? 1+ GMA(1 +d)u

L 300400 - B9 () + R (§)))(GM)?

2u?

2L2(1+6)

_e2? a _e2)2 a
o0 (o) (ay 4 o) (9)2)GMu

Ac2(1+96)

(4.1.12)

Then rearranging and ignoring any terms of order (%)3 we get the following ODE:

15



ATV R 5 P A o PR (<211
d¢? 1+6 wu A 145 u a(l— €2)
Lﬂ(ﬁf_iﬂ(ﬁy_{_w(i)
T+o 20> A 140 w? A 2(1+0) N
0GMu 0GMu 5(1 —e2GM) ,a ) a3
_02(1+5))\+02(1+5)/\_ 02(1+5) (X) @ F . (4.1.13)

_|_

Here we can see that a few terms cancel. We will deal with this ODE in a similar manner
to how we dealt with the ODE in the GR case. First writing the ODE in terms of single
constants:

d2'LL b 2
W+u_1:ﬁ—au + c. (4.1.14)
Here:
L _3(GM)
~ c2a(l — e?)’
§(1—e?)? a

LY
36GM(1—¢%), a §(1—e2GM) ,a
T 2(1+0) ()~ 2(146) (X)z' (4.1.15)

We consider u to be the Newtonian solution plus a small deviation. Thus v = ug + u;. Then:

dQUQ
G 1w =0, (4.1.16)
d*u b

Here we impose w1 is small and so is the factor of a. This assumption that u; =~ a, is self
consistent as can be seen in the equation below where the solution to u; is proportional to
a. The factor b is also small so to keep consistency we also drop terms in the denominator of
the b term. The solution to the first ODE here is well known: : ug = 1 4 ecos¢. Subbing
this in to the second ODE results in:

fur
de?

b
uy :a(l—l—ecosgb)z—i—m—kc. (4.1.18)

To which one solution from mathematica is:

. _ (1—e) tan( 2
2be sin(¢) tan~! <\/%2(2)>

e [3ae* + 3ae? + a (1 — €?) e? cos(2¢) — 6 (1 — €?) sin(¢)(aed + cz) — 6a — 6b + 6ce* — 6]
Ge (1 — e?)
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_3cos(q§) [2b—e (1 —€?) (ae + 2¢1)]
6e (1 — e2)

. (4.1.19)

From this we extract the only term which contributes to the precession, which is the only
non-periodic term, thus:

u1 = aepsin . (4.1.20)
Thus:
u =1+ ecos ¢+ aepsin ¢. (4.1.21)
Then by similar methods as section 1.1:
L2
r= + O(a?). (4.1.22)

GM(1+ ecos((1— a)p))

Noticeably since a is the same as « in section 1.1, this results in Yukawa gravity predicting
the same equation for the periastron advance as GR.

3(21)5/3T2/3 (m, + me) 2/
P:/g(l —e?) .

Wyk = WGR = [ (4.1.23)
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4.2 Amplitude of Einstein delay ~:

Again following a similar method to section [3.2] we start with our modified Schwarzschild
metric, once again choosing constant values for ¢ and 6 so that d{2 = 0. Thus:

—2dr? = — (14 20) dt? + (1 + 28) L dr?. (4.2.1)

Where @ is the same as [£.1.2] Then taylor expanding the right most term as once again for

2
pulsars: GAQ/[ ~ ig
rc C

~ 1075, results in:

4
Adr? = (1 - 20) 2d* — (1 — 20 + O(ZZ)) dr? (4.2.2)

The r in dr here is the distance from the pulsar to the barycenter r,, as to measure the time

dilation we need to see how the pulsar is rotating around its center of mass. Then using

_ drp,
Up = gt -

Adr? = (1 —2®) 2dt* — (v +2®v ) dt?
v
cdr? = dt? (c + 2072 v + O( —p > (4.2.3)

Then:

uk‘*a@u;

7 5 ). (4.2.4)

For the pulsar, the r in the ® term is the distance from the pulsar to its companion star and
the M is m, as this field is due to the presence of the companion star. Thus:

d 1 vy
T—\/l+c2(2¢>cg—v2)—1+@—+(’)(

dr . Gme (1+de”%)  v)
dt rc? 1+6 22
Now we wish to obtain an expression for v, as we did before in section To do this we

consider once again the the orbital energy of the binary system:

(4.2.5)

1, Gmyme. (14 de™ %)
E_i'lw r (1+490)

Where the relation between a and E is:

(4.2.6)

Gmym, (1 4 6e™ %)
2a (1+9)

This relation can be thought to come from the fact that there are many different possible
elliptical orbits with the same a and different E, but as the limit of 77 as v — 0 r must go to
2a, the length of the ellipses major axis. Using this relation results in the following expression
for the orbital velocity:

E=-

(4.2.7)

2 _ Gmyme |2(1+e™%) 1+ 56_27(1)
u(l+9) r a

(4.2.8)
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Then with v, = —+t-v:
D

- Gm? 21+e %) (1+6e %)
— — (4.2.9)
P (48 | 7 a
Then subbing into
dr | Gme(1fde3) Gm? (L+e %) (1+oe %)
dt re2 14946 c2(mp +me)(1+0) r 2a '
_r —2a
4 Gme (mp +2me)(1+e7x)  me(l+de” V) . (4.2.10)
c2(mp +me)(1+40) r 2a

Here we can ignore any constant terms as they just integrate to be proportional to ¢t and can
then be ignored by scaling ¢ at the end. Then letting o = Gme (mp+2me)

c2(mp+me) and taylor expanding
T 2 3
K15t g+ O

@—l—g—i— ) B oor
dt ro AM1+9d)  2X2(1+9)

Just as in section we use the eccentric anomaly E to integrate this expression, as r =
a(l —ecosE), wt = E — esin E and thus wdt = (1 — ecos E)dE. Thus:

(4.2.11)

! o oo 06(l —ecosE)
o)l - 1 — ecos B)dE
! W/[ a(l—ecosE)+)\(1+5) 2)\2(1+5) ]( ecos E)dE,
_ 1 05 g O'(Sa(l—eCOSE)Q
_w/[(l—ecosE)(l-i-M)—a— (1 +0) }dE (4.2.12)
Which becomes: , }
o o
= —(F—esinF)(l1+ —)— —F
= T w( esin E)( +/\(1+6)) o
et (B = 2esn B + (B + Jsin2E) (4.2.13)
2WA2(1 +6) s 5 58 2.

Then converting back to t using ¢ = L(E — esinE) and for any singular E terms using
E=wt+esink:

— 7=t 1+075_E_L;a(1+672)
B M1+6) a  2X2(1+6) 2
- g—”%;“(1—32) CsnB+ 20 op (4.2.14)
a  2X%(1+9) 2w 8\2w(1 + 9) o
Re-scaling t to absorb the constants results in:
o oda e\ e odae?
=t—|(——=————=1——=) ) —sinkE + —————=5sin2F 4.2.15
T (a 1o T2 >> YOO R R (42.15)

Notably we can see here that Yukawa like gravity not only predicts an extra term added to the
amplitude of the GR Einstein delay, but also predicts there to be an extra delay proportional
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to sin 2E. Thus the over all modification to the arrival times caused by gravitational red shift

and time dilatation is:

T=t+ysin E+ ygsin2F (4.2.16)
Where:
Gme(my + 2me)e Gme(my + 2me)eda e?
p—y = — 1 —_— —
=TGR+ 0 A(mp +meaw 22 X2w(1 + 6)(myp + me) ( 2 )
Gme(my + 2me)dae?
_ 4.2.17
72T 8w (1 1 8)(my +me) ( )
Thus:
1 5 2
2 (or\ 75 2 4, (27\ 75 +2me)ed(1— &
= (”) me(my + 2me) | s 2 (“) melmp +2me)ed1 = 5) = 1)
By (myp +me)3 By IN2(1 + 6)(my +me)3
5
4,02\ 3 2m.)ée?
vy = T3 2 (”) me(mp £ 2me)0e” n (4.2.19)
BoJ 821+ 8)(my + me)s
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4.3 Shapiro delay AS:

Once again we begin with the modified Schwarzschild metric. Though this time as we are
dealing with the delay in the travel time of light beam, thus the metric becomes light like
meaning: ds? = 0. Then once again fixing ¢ and # so that the solid angle is 0 the metric
becomes:

(14 2®) Pdt> + (1 +28) ' dr? =0,
2Gm.(1 +(56_;)>

(4.3.1)

‘ =c(1+42P) = (1— /(1T )

Where M — m, as the gravity well of the pulsar is just a constant and doesn’t contribute to
the spacing of the time of arrivals. Dividing across and taylor expanding as % is small,

results in:
:1 1+2Gn2%(1+5e x) ’
c A2|r|(1+9)

re(tarr) -z
— tm_tem:/ 1 1+2GT;LC(1+56 DY .
rp(tem) C c?lr|(1 +6)

re(tarr) -
QGmC/ (A +6e7%) de|.  (4.3.2)
(

AL +0) Jry(tom) x|

Here r. is the vector pointing from the origin which is the binary barycenter to the earth,

tem is the time of emission and ¢4, is the time of arrival. Then once again taylor expanding
T 2 3

e X =1— %+ 55z + O(53), The integral on the right hand side, which corresponds to the

total Shapiro delay, becomes:

2Gm,  [Feltar) /(1 4 6) d|r]
AS — - 4.3.
T A1+ 9) /rp@m) < o3t o (43

From here we can again drop the constant term in the integral. Then changing from |r| to a
function of time, as |r| = |x(f) — re(tem)|, i-e. |r| is the distance from the path of the light to
the companion star. Here the path of the light x(¢) is given by:

1
= tarr — tem = E(rp(tem) - re(ta'rr)) +

t_tem

xX(t) = rp(tem) + (re(tarr) — rp(tem))- (4.3.4)

tarr - tem

Changing to a function of time picks up an extra factor of c¢ as |dr| = cdt. Thus the full
Shapiro delay becomes:

0Gme.

tarr
AS = ASGR + m /t;m |X(t) — rc(tem)]dt. (435)

The calculation of ASgr is omitted here but can be found in section So in Yukawa
gravity the Shapiro delay is given by:

AS = ASgr + ASyk. (436)
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Then again using the substitution 6§ = o the the bounds of the integral now go from 0

to 1, resulting in:

t— tem
T

o 5Gmc(tar7" - tem) !
ASyk = Z\2(170) /0 Ity (tem) — Teltem) + 0(ve(tarr) — Tp(tem))|db. (4.3.7)
Then seeing as |re(tarr) — Tp(tem)| = c(tarr — tem) and |re(tarr)| = |re] >> [rp(tem)] :
IGme|r.| _ 6Gmelr?
ASYK m / |I' + QI‘e\d@ m / ‘ |re‘ + 9re\d0 (438)

Where r = rp(tem) — re(tem). Then:

5Gmc|re\2 5 5
ASyg = 3)\2 / \/9 + 201, - 7@ (| e|) do.
§Gme|re|? . r
4.3.
63)\2 1+5 / \/6+ € | e’ (|re’) (I‘e ’r€|) do. ( 39)

Then letting ku =6 41 - ‘ where k% = (Ir |) (fe - )% . The integral then becomes:

Jrel

| 9

0Gme|re
ASyr = 3X2(1|+|5 E*\/u? + 1du. (4.3.10)

Then letting u = sinh ¢/, the integral can be solved by:

1
I= / Vu? + ldu = /cosh21/1d1/1 = /2(1 + cosh 2¢))da)
1 1. 1 :
= 5(1/1 + 5 sinh 2¢)) = §(w + sinh v cosh v)). (4.3.11)
Then using the fact that cosh(sinh™' ) = Vu2 + 1 and sinh™' = In [u + v/u2 + 1|. Then:

1 1
Iziu u2—1—1—|—51n]u+\/u2+1|. (4.3.12)

And thus equation [4.3.10] becomes:

(M ;(;(ewe-h‘;’))\/(;(9+fe~hl;|))2+1
+im <;<e+fe-@>>+\/<;<9+m-;6‘))2“ 0
§Gmelre|?k? | 1,1 ) r 1 R r
= BN(1 13 2(k(1+re-|re’))\/(k(1+re-‘re|))2+1
~1In (;(1+fe-@))+\/(i(1+fe-|;’))2+1

(e )+ \/<;<fe- !




Then pulling out factors of k:

§Gme|re|?
3XN2(149)

ki2
+ ?ln

ASyk =

|re|

1
|:2(1+f-6.r)\/(1+f-6.r)2+k2

(1+f~e.‘:|)+\/(1+f~e.

e [ 2

e el

2
LA

2

e —l—ln]k!—ln\k!].
Ire Tl

(e - — )+\/(f,3- : )2+ k2

[r|

Then subbing in for £ and imposing o] << 1, leaves the only remaining terms to be the
logarithm terms:

SGme|re|*k? N |
AS = —— —  |In|2| -1 e’
YR T 982 (1 4 6) nf2f=Inje re " Ire
2 _ (p+ . p)2
_0Gme((r)? — (e - 1) )mm_r+ ]| (4.3.13)

2¢302(1 4 90)

Where we have dropped any constant terms to get to the last line. Then seeing as 1. - r =
|r| sin(7) sin(w + ¢) and writing the logarithm term as we did in section [3.3| results in:

 3Gmea?(1 — €?)(1 — sin?(w + ¢) sin®(i))

ASvK = 263X2(1 + 0)(1 + e cos )

x In ‘1 —ecos E —sini(sinw(cos E —e) + /1 — €2 sinEcosw)‘ . (4.3.14)
Then by equations [3.3.16[- [3.3.18 and Kepler’s ellipse equation:

§Gmea®[(1 — ecos E)? — sin®i(sinw(cos E — e) + /1 — 2 sin E cosw)?]

A —
Sy 263N2(1 + 6)

xIn|l—ecos E —sini(sinw(cos E —e) + /1 — €2 sinEcosw)‘ . n (4.3.15)
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5 Examining higher order corrections in GR

Due to the upper bound on A [7] the corrections to the GR PK parameters are exceedingly
small, smaller in fact then the terms we drop in the derivations of the GR parameters above.
Thus if we wish to tell these deviations apart from those that come from ignoring terms of
similar magnitude in GR, we need to find expressions for the GR PK parameters that only
ignore terms smaller then those of Yukawa gravity corrections.

5.1 Periastron advance w:

We begin by looking at the periastron advance, however there is an immediate problem that
in equation we the terms of order aujug or higher from the ODE as we make the
assumption that u; is a small deviation, which is self consistent as it becomes proportional to
«a. However attempting to restore just the cujug term to the ODE results in an ODE that is
not solvable by mathematica, preventing any consistent higher order corrections from being
made to the periastron advance. This is not a huge deal as the Yukawa gravity predicts the
same periastron advance formula as GR so it can be left at its current order.

5.2 Einstein delay~y:

For the Einstein delay we can repeat the same method of calculation instead now ignoring
terms any higher than the smallest terms in the equations derived in section i.e. ignoring
any terms smaller than vy ~ v2 ~ 1076, We can note that this is ridiculously small, but a
full breakdown of terms to see if deviations of the theories could be seen at the leading order
in Yukawa gravity corrections, is needed.

t G~

2
Through out this derivation we use the fact tha ~ Z—’Q’ ~ 107%. We begin a step on from

the Schwarzschild metric, equation [3.2.3

2Gm, 2Gmv?
Adr? = <1 - GT) Adt? — <v2 + p> dt?.

rC p rc?

r p rc2

2G'm,. 2Gmv>
e ( Gm _UQ_W%) 52,1

_ drp .
Where v, = -7, Thus:

1 [2Gm, 9 2Gm,
T2 [ Fop(l+ re? )
1 |4(Gmo)?  4Gm., ,  2Gmevl , AGmevy  4(Gme)?o, s
8¢t 72 + r (v + rc? )+t rc? + r2ct + 0(076)' (5:2:2)
Where we have taylor expanded in the last step. Then dropping more terms:
2 2 2 4 6
dr_y_Gme b Gmey (Gmof Gmevy vy o(L). (5.2.3)
dt re2 22 rct 2r2ct 2rct 8ct b
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Then using equation which says:

Gm? 2 1
go Gt (2.1), 52

mpy+me \7 a

Thus: ( 2)2
Gm 4 2 1
4 c
_ Bl 2.

Up (myp +me)? <r2 ra+a2> (5.2.5)

Then ignoring constant terms as we have done before, due to the fact that after we integrate
we can re scale t to include any constant terms in the RHS of equation [5.2.3] Then [5.2.3
becomes:

dr 1 Gme Gm? 3G%m3 3G%m?
dt re2 A(mp+me)r  Amp +me)r? 2t (my + me)ra
G 2 G2 4 GQ 4
_Cme_ Gme Te (5.2.6)
2r2¢ 2ct(myp +me)?r? - 4ct(my + me)?ra
_1_ 1 1Gme n Gm? B G?*m? n 3G?m?
r| ¢ A(mp+me) 4t (mp +me)2a - 2¢H(myp + me)a
1 3G2m3 G 2 G? 4
- [ AGTme__ (Gme)” G 2] . (5.2.7)
r2 | ct(mp + me) 2¢ 2ct(my + me)

We wish to re-arrange to return the original GR parameter plus extra contributions. Thus:

.1 [Gmc(mp +2me)  G*m3(6m, + 5mc)]
,

c2(my +me) 4ct(my +me)?a

1

r2

G*mZ(9ImZ + 10memy, + m2)

P (5.2.8)

We can see that the first term will return the delay calculated in section we will however,
temporarily combine this term for the sake of brevity. Thus:

Once again to carry out the integral we employ the use of the eccentric anomaly E. r =
a(l —ecosE), wt = F — esin E and thus wdt = (1 — ecos F)dE. This means the integral
becomes:

721/[1a( S B )2](lecosE)dE,

w 1—ecosE) a?(l—ecosFE
1
:/ 1—ecosE—g—# dE,
w a a?(1—ecosE)
1 « 15} dE
=—(F—esinE——F)— . 5.2.9
w( e a ) wa? | (1—ecosE) ( )
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To evaluate this integral we use Weierstrass substitution, that is writing the cos F in terms

of tan %
dE dE sec? %dE
€ cos (1—e 2) (14+e)tan® 5 + (1 —e)

tan?2 % +1

: _ /I¥e E _ Vi—e_ 2d : .
Then letting u = NG tan 5, thus d& = \/msec;‘g . Which leads to:
Vvi—e du 2 du

— 2 —
V1t e) A—e)(u2+1)  V1I—e2) ut+1

This final integral is easily recognised as arctanw. Thus the final solution becomes:

2 ; (\/1+€t E) 2 " ( 1+e . E) (5.2.12)
——— arctan an — | = ———= arctan [ ——=tan — 2.
V1—e? V1i—e 2 1—e? V1 —e? 2
To put this in a form more akin to that of the Yukawa gravity contributions, we consider the
taylor expansion of the above solution to the integral around \/% = 1, as we are usually

1+e 1+e
e V1—e?

Vi-e?
b E —1)tan(Z 12 tan3(E
arctan <:Utan> = arctan<t3n<>> n (z )Ean(z) _ (z —1)"tan”(3)
2 2 tan2(§) + 1 (tanQ( 1

(5.2.11)

I =

is:

dealing with small e, thus ~ 1 The resulting expansion, letting = =

+(x —1)%tan’(£) (3 tanQ(g) - 1) B (x —1)*tan® (%) (tan? (%) —1)
5+ (1-+ tan? (5))"

+0 ((z — 1)?) (5.2.13)
Here if we consider e ~ 1071, then (z—1) ~ 10~!. Then if we consider a% R Z—§ ~ 10~!? and the
orbital period P, to be on the order of roughly 0.1 days, then w ~ 10~* and thus % ~ 1078,
So in order to obtain the same order as that predicted in section for Yukawa gravity we
keep only terms larger than O ((ZL‘ — 1)9) ~ 10~°. Using mathematica this expansion can be
simplified to:
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E 1 . 1 . 1 . 1 . 1 .
5—1-5(3:—1) sm(E)—Z(:z:—l)2 sm(E)—l—g(x—l)?’ sm(E)—E(ar—l)4 sm(E)+3—2(x—1)5 sin(E)

L s L)) sin(B) - — (218 s Lo 12sineE) - Le_1)s
64(3; 1) s1n(E)+128(x 1)"sin(E) 256(3: 1) sm(E)—i—S(a; 1)“sin(2F) 8(3: 1)°sin(2F)
+ 3 ) sin(2B) - L (2-1)7 sin(2E)+ —— (2—1) $in(2B) — —— (2—1)7 sin(2E) 4 — (z—1)® sin(2E)
32 16 128 128 512
L 13 sin(3E)— = (2—1)4si L 1 sin(3E) -2 (2—1)0 s O )i
+24(:1c 1)°sin(3E) 16(96 1) sm(3E)+16(:r 1)?sin(3E) 96(x 1) sm(3E)+128(m 1)"sin(3E)
7 . 1 i 1 5 5 .
256(3: 1) sm(3E)+64(at 1)*sin(4E) 32(1’ 1)’sin(4EF) + 128(:8 1)°sin(4F)
5 - 35(x — 1)¥sin(4E) 1 5 . 1 6 .
128(:1: 1) sin(4E) + 024 + 160(96 1)’sin(bE) 64(:[; 1)°sin(5E)
3 1) o1 L1 B
+128(m 1) sin(bE) 256(x 1) sm(5E)—{—384(z 1)’ sin(6E) 128(m 1)"sin(6E)

7 , 1 _ 1 , (x —1)%sin(8F)
—(z—1)% E)+—(z—1)7 E)— —(z—1)%s E
+512(z ) sin(6 )+896(x ) sin(7E) 256(m )°sin(7E) + 2048

Then dropping a few terms that have factors that make them smaller then the limit results
in:

(5.2.14)

I= \/12_i62 g + %(:g — 1)sin(B) — i(m —1)2sin(E) + é(x —1)*sin(E) — %6(:5 — 1)t sin(E)+
3%(95 1) sin(E) — 6714(:5 —1)8sin(E) + é@ 1)2sin(2E) — %(x —1)*sin(2F)
—1—5—2(.% 1)t sin(2E) — %(x 1) sin(2E) + %@; 1) sin(2E) + i@; 1) sin(3E)
—%(az — 1)*sin(3E) + %6(35 —1)°sin(3E) — %(x —1)%sin(3E) + 6—14(95 —1)*sin(4E)
1

. 5 : 1 . 1 .
—3—2(30 —1)°sin(4E) + m@ —1)5sin(4E) + ﬁ(x —1)°sin(5E) — 6—4(:6 —1)%sin(5E)
(5.2.15)

Subbing back in, with z = \/% Results in:

_ (6—2)(\/1—62—6—1> (—962+7\/1—626—14m+6+10>
sin B 8c— 1Pt Vi

I E
“|vice

(\/1 2 1) (e2 — 14v1 = % + 28V1 — €2 + 26¢ — 32)
—sin2F
8(e — 1)3y/1_ 2

3
<\/1 s S 1) (1462 4 21VI— e — 5e — 19)
24(e —1)3(e +1)2vV1 —€?

+sin3F
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(—m+e—l—l>4 <7m+36—8>

+sin4dFE
32(e—1)3(e +1)2v1 —¢?
(7 _ 5(5+1)> ( e+1 1)5
) N
+sin5E ! ! (5.2.16)

160v1 — e?

For the sake of brevity we label these functions of e as fi(e), fa(e)... etc. Now we wish to put
this all together, so equation after subbing in wt = F — esin F once again becomes:

o B a B 1 :
=(1-—— —F—= ]t —+ —(—- E
= (-8 (Gt e
—% [—f2(e)sin2F + fs(e)sin3 + fa(e)sindE + f5(e)sinbE]. (5.2.17)
Which re-scaling ¢ becomes:
o I5} 1 .
T=1t+ <wa + m(im — fl(@))) sin K/
+£2 [f2(e) sin2E — f3(e)sin3 — fy(e) sindE — fs5(e)sin5E]. (5.2.18)
wa
We can write this then as:
T=t+ysinE+v2s8in2F + y3sin 3E + y4sin4E + 5 sin bE (5.2.19)

Where if we were to separate the original GR term, we would see that v; = ygr + 70, where
o is made of various other small terms.

What this analysis shows is that at the same order we begin to see terms from Yukawa gravity,
GR predicts a whole host of higher frequency terms. It can also be noted that the factors
of the sin £ and sin2F, terms predicted by Yukawa gravity have terms from GR that are
larger and thus would be far more noticeable. the Yukawa terms are of order 10716, where
as extra GR corrections are as large as 10~® and as small as 1076, compared to the original
GR terms of order 1076, This is further evidence that Yukawa gravity does not deviate from
GR enough in the regime of Solar system size systems, to be noticed in the measurements of
post Keplerian parameters.
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5.3 Shapiro delay AS:

Finally we look at adding higher order corrections to the Shapiro delay. To account for
corrections of similar magnitude to the corrections derived under Yukawa gravity in section
we look at the next leading term in the taylor expansion carried out in equation [3.3.2
Which now becomes:

dt
dr
Integrating the first two terms returns the Shapiro delay calculated in section 77, so we will
just focus on integrating the last term.

1 <1 N 2G'm, N 4(5;3;?) L0 <(2Gmc)3> (5.3.1)

c A2lr| 2r|

re(tar'r) 4(Gmc)2

Sl (5.3.2)

1
tarr — tem = *(rp(tem) - re(tarr)) + ASGR + /
¢ rp(tem
We follow the same procedure as section Writing |r| as [x(¢) — re(tem)|, where x(t) is the
same as equation and switching to integrating over time ( |dr| = c¢dt ). Once again we
use the substitution § = —=tem_ making the bounds of the integral go from 0 to 1. Thus:

arr_te m
4(Gme)? 1 (tarr — tem)dO
AS = ASgp + / . 5.3.3
ct ’rp( em) = Te(tem) + 0(re(tarr) — rp(tem))P ( )
Then seeing as |re(tarr) — Tp(tem)| = c(tarr — tem) and |re(torr)| = |re| >> [rp(tem)] :
4(Gme)? 1 o 4(Gmy)?
AS ~A = . 3.4
S Sar + Slre| / |ﬁ 1 01,2 lre| / 02 -1-291‘@ . rT| (W)Q (5.3.4)
Where r = rp(tem) — re(tem). Then:
4(Gme)? ! de
AS = ASgr + / - ~ T . 5.3.5
Sl o Orie P (P 08

Then using the substitution 6 + . - ﬁ = ku, where k? = (£)? — (£ - i&7)?. Leads to:

[re] Ire

4(Gme)? (1 kdu 4(Gm,)?
AS =A =A e
S Sar + 05‘re| /0 k‘Q(u2 1) Sar + 5‘ e’k arctan( )

1

1
arctan ((0 +re - r)>
k 0

re|

4(Gm,)?

dy/r2 — (T - 1)?2

4(G 2 r. . T -
_ ASgp + —Gme) arctan | T e T ) an [ Te T
S4/r? — (fe - 1)? r?2 — (f.-r)? r2 — (f.-r)?
— [ ( - ) ( = )}
~ ASgr + ———— |arctan | ————— | — arctan | ——— 5.3.6
GRT 5 r2 —r,-r? r2 —r,-r? r2 —r,-r? ( )

and since |re| >> /r? — 1. - 1%

N 4(Gm)? T Te-r
AS ~ ASGR + C5W — — arctan m

4(Gme)*(1 + ecos ¢) T etan ( Sin(i) sin(w + ) )
acd(1 — e2)y/(1 + sin?(i) sin®(w + ¢)) | 2 /1 —sin?(4) sin?(w + ¢)

= ASar +

AS = ASgr+
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This is as far as we can reduce this equation. What can be noticed is that this addition is of
order =~ 1072 compared to the extra addition from Yukawa gravity of 10716, So it would be
more noticeable, though still small compared to the original GR term, ASgr ~ 1075,

6 Conclusion

In conclusion a thorough investigation into the GR PK parameters and their derivations was
carried out. Effective code was developed to produce mass-mass diagrams for given pulsar data
and confirm GR’s description of binary pulsars. This was aided by tempo2’s fitting of the PK
parameters. Analysis of the PK equations of Yukawa-like gravity revealed extra contributions
to the parameters, though it was concluded it would be difficult to accurately test this theory
of gravity with binary pulsars as the contributions were of smaller order than the order set out
to calculate the GR parameters. Further analysis of GR PK equations revealed more terms
that were larger or equal to in magnitude to the contributions from Yukawa gravity. This
makes it even harder for Yukawa gravity to be tested and further diminishes the possibility
of its testing in this regime. Far more accurate measurements of pulsars would be needed to
come to a more concrete conclusion on Yukawa gravity.
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