
General Relativity Lecture Series 8 Proper Time

Lecture 3
In this lecture we want to talk a little more about index notation and specifically 4 vectors as well as
tangent vectors dual vectors and tensors? When vectors are timelike space like and null like.

9 4-Vectors
In this lecture we will be introducing different vectors in the context of curved spaces/spacetimes and seeing
how they transform. When we talk of vectors it is most useful to talk about the components of vectors
given we have picked some basis. While this is the most convenient to out human brains, it is not how the
theory of GR describes reality. In GR, as I have hopefully stressed so far, everything is fundamentally co-
ordinate independent. So when we talk of vectors we are really talking about the objects 𝑉  which can be
expanded in terms of a basis 𝑏𝜇 with components 𝑉 𝜇:𝑉 ≔ 𝑉 𝜇𝑏𝜇 (5)
Note while we are using index notation for the two objects here it is not the same for both of them. For each𝜇 = 0, 1,…, 𝑑 − 1, the component 𝑉 𝜇 is just a number, where as each 𝑏𝜇 is a basis vector with components(𝑏𝜇)𝑖 = 𝛿𝑖𝜇. We mainly will be dealing with the quantity 𝑉 𝜇 but it is always implied implicitly that the real
vector is given by 5 above.
Recall in mechanics when we want to discuss vectors we take a derivative with respect to time of some co-
ordinates and this gives us the perfect definition of a vector as a arrow at a point pointing in the direction of
motion. In a similar manner we can take our 4-vector and take a derivative. Though before our derivatives
were with repsect to time, now that we have relativity time is no longer a background parameter. We will
need to is to consider the trajectory that the particle is on. This is given by 𝑥𝜇(𝜆) is a map from ℝ → ℳ
that paramatrizes the trajectory, 𝜆 here is just any parameter that paramatrizes the curve. For example for
massive particles we can always choose their proper time 𝜏 = 𝑥2, that is the time as seen in their reference
frame, to paramatrize their trajectories. With this formalism of describing trajectories we can write down
the definition of a velocity 4 vector cleanly as: 𝑉 𝜇 ≔ 𝑑𝑥𝜇𝑑𝜆 (6)
This definition might seem a little strange as it is very dependant on the choice of parametrization, which
seems arbitrary (for example we can scale lambda by any factor and get the same curve if we mess around
with the end points). To pick out a paramatrization, a normalization condition such that the vector has
length one, (where by length I mean inner product with respect to the metric) can be applied to the vector.
This condition is equivalent to paramatrizing by proper time, (or proper distance if the curve is space-like)
which is conveniant.
With this definition we can consider what happens if we change co-ordiante system. We had been using the
co-ordinate system 𝑥𝜇(𝜆) but we can always choose a different co-ordinate system 𝑦𝜇(𝜆) and this should
not change the physics. When we make a change of co-ords we always have it that the two different co-ord
are functions of each other, (Think of 𝑥 = 𝑟 cos 𝜃). Hence we can apply the chain rule to the definition 2.
Partial derivatives do not obey the chain rule, they instead have a sum of “chain rule like terms”, but this
is exactly index notation!, so in essence the chain rule trick of “cancling the “𝑑𝑥’s” is restored with index
notation: 𝑑𝑥𝜇(𝜆)𝑑𝜆 = 𝑑𝑦0(𝜆)𝑑𝜆 𝜕𝑥𝜇(𝜆)𝜕𝑦0(𝜆) + ⋅ ⋅ ⋅ +𝑑𝑦𝑑−1(𝜆)𝑑𝜆 𝜕𝑥𝜇(𝜆)𝜕𝑦𝑑−1(𝜆) = 𝑑𝑦𝜇(𝜆)𝑑𝜆 𝜕𝑥𝜇(𝜆)𝜕𝑦𝜇(𝜆) (7)
We can then notice that 𝑑𝑦𝜈𝑑𝜆  is exactly the same as the definition of 𝑉𝜈 in 6, just in the new coordinate
system. This means we can call this vector (𝑉 ′)𝜈 and relate to 𝑉 𝜇 by manipulating the above expression 7:(𝑉 ′)𝜈 = 𝜕𝑦𝜈𝜕𝑥𝜇𝑉 𝜇 (8)
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This defines how these type of vectors transform, we will call such vectors contravariant. It is possible to
conceive of another type of vector. If we had a scalar function 𝑓(𝑥) on our manifold, that is some function𝑓 : ℳ → ℝ, then we can get a vector from this quantity by taking derivatives of this function with respect
to all the components: 𝑊𝜇 = 𝜕𝑓(𝑥)𝜕𝑥𝜇
This defines a different type a vector as if we consider the same transformation as before, the chain rule
now tells us: 𝜕𝑓(𝑥)𝜕𝑥𝜇 = 𝜕𝑓(𝑥)𝜕𝑦0 𝜕𝑦0𝜕𝑥𝜇 + ⋅ ⋅ ⋅ +𝜕𝑓(𝑥)𝜕𝑦𝑑−1 𝜕𝑦𝑑−1𝜕𝑥𝜇 = 𝜕𝑓(𝑥)𝜕𝑦𝜈 𝜕𝑦𝜈𝜕𝑥𝜇
Which means if we call this transformed vector (𝑊′)𝜈 , then this is related to 𝑊𝜇 by:(𝑊′)𝜈 = 𝜕𝑥𝜇𝜕𝑦𝜈 𝑊𝜇 (9)
Note the key difference between this and 9 is that the positions of 𝑥 and 𝑦 in the derivatives have swapped.
We call any vector that transforms this way a co-variant vector.
We are now able to see the most important property of objects that transform like this. Let me take a
contravariant vector 𝑉 𝜇 and some other co-variant vector 𝑊𝜈 and contract them together with the same
index (this is just like a dot product). This is just the quantity 𝑊𝜇𝑉 𝜇. What is special about this quantity
is that when we make any co-ordinate transformation, such as 𝑥𝜇 → 𝑦𝜇(𝑥), then this object transforms via:𝑊𝜇𝑉 𝜇 → (𝑊′)𝜇(𝑉 ′)𝜇 = 𝜕𝑥𝛼𝜕𝑦𝜇 𝑊𝛼𝜕𝑦𝜇𝜕𝑥𝛽 𝑉 𝛽
But we can then use our knowledge of the chain rule, to write:(𝑊′)𝜇(𝑉 ′)𝜇 = 𝜕𝑥𝛼𝜕𝑥𝛽𝑊𝛼𝑉 𝛽 = 𝛿𝛼𝛽𝑊𝛼𝑉 𝛽 = 𝑊𝛼𝑉 𝛼
Where we have used the fact that 𝜕𝑥𝛼𝜕𝑥𝛽 = 𝛿𝛼𝛽 . This is a remarkable result, the quantity 𝑊𝜇𝑉 𝜇 is invariant
under co-ordinate transformations. Since we have been so general, this tells us the works for any vectors that
transform in the same way as these co-vectors and contra-variant vectors do. What makes this remarkable
is if we recall what we discussed in Lecture 1, one of the postulates of general relativity is the principle
of general co-variance, in that physics should not depend on the co-ordinates used to describe it. Einstein
then concluded that in order to build a theory of gravity that satisfies this principle, he must construct it
out of objects that transform this way.

10 Tensors
We are now in a position to discuss the building blocks of General Relativity, which are Tensors. With
the way we have set things up these should present themselves as canonical extensions of co-vectors and
contravariant vectors, despite their abstract definition.
10.1 Tensor definition:
A tensor of type (𝑘, 0) and rank 𝑘, given a co-ordinate system 𝑥𝜇 is defined as he object:𝑇𝜇1,…,𝜇𝑘(𝑥)
Providing that this object under co-ordinate transformations, 𝑥𝜇 → 𝑦𝜇, via:𝑇𝜇1,…,𝜇𝑘(𝑥) → (𝑇 ′)𝜈1,…,𝜈𝑘(𝑦) = 𝜕𝑦𝜈1𝜕𝑥𝜇1 ⋅ ⋅ ⋅ 𝜕𝑦𝜈𝑘𝜕𝑥𝜇𝑘 𝑇𝜇1,…,𝜇𝑘(𝑥)
Similarly we can also define a tensor of type (0, 𝑠) which must transform via:

- 10 -



General Relativity Lecture Series 10 Tensors𝑇𝜇1,…,𝜇𝑠(𝑥) → (𝑇 ′)𝜈1,…,𝜈𝑠(𝑦) = 𝜕𝑥𝜇1𝜕𝑦𝜈1 ⋅ ⋅ ⋅ 𝜕𝑥𝜇𝑠𝜕𝑦𝜈𝑠 𝑇𝜇1,…,𝜇𝑠(𝑥)
It is also possible to have tensors which have a mix of upper and lower indices, in this case each index
transforms according to whether it is upper or lower. The rank of a matrix is the total number of indices
i,e, 𝑘 + 𝑠. It is easy to see from these definitions, that when someone asks what a Tensor is, you may simply
reply “A Tensor is something that transforms like a Tensor”. While being purposely obfuscating this is
entirely accurate.

11 The Metric Tensor
Having discussed Tensors in quite and abstract manner we can now take the time to study the simpler case
of a rank 2 tensor, and probably the most important tensor in GR. We have seen already how the metric
is a matrix that tells us how to measure distances on surfaces that can possibly be curved. We can then
extend this to measure the length of any vectors on possible curved space. The natural extension is to take
the standard inner product and replace what would be a 𝛿𝜇𝜈 with a 𝑔𝜇𝜈 :𝑉 2 = 𝑉 𝜇𝑔𝜇𝜈𝑉 𝜈
For example in flat spacetime when we have the Minkowski metric, 𝑔𝜇𝜈 = 𝜂𝜇𝜈 , then this is just:

𝑉 2 = (𝑉 0, 𝑉 1, 𝑉 2, 𝑉 3)((((((
(−1000

0100
0010

0001))))))
)
((((((
(𝑉 0𝑉 1𝑉 2𝑉 3))))))

) = −(𝑉 0) + (𝑉 1)2 + (𝑉 2)2 + (𝑉 3)2
What we can then note is that if we employ the physical constraint, that the length of this vector should
be independent of the choice of co-ordinates. Then we should be able to transform the co-ordinates 𝑥𝜇 →𝑦𝜇 (which means the vector 𝑉 𝜇 transforms via 8), which leads to the following condition:𝑉 2 = 𝑉 𝜇𝑔𝜇𝜈(𝑥)𝑉 𝜈 → (𝑉 ′)𝜇𝑔′𝜇𝜈(𝑦)(𝑉 ′)𝜈 = 𝜕𝑦𝜈𝜕𝑥𝛼𝑉 𝛼𝑔′𝜇𝜈(𝑦)𝜕𝑦𝜇𝜕𝑥𝛽 𝑉 𝛽 = 𝜕𝑦𝜈𝜕𝑥𝛼𝑉 𝛼𝑔′𝜇𝜈(𝑦)𝜕𝑦𝜇𝜕𝑥𝛽 𝑉 𝛽
So if (𝑉 ′)2 = 𝑉 2, the condition on the metric 𝑔′𝜇𝜈 is that:𝑔𝜇𝜈(𝑥) = 𝜕𝑦𝛼𝜕𝑥𝜇 𝜕𝑦𝛽𝜕𝑥𝜈 𝑔′𝛼𝛽(𝑦)
Or equivalently: 𝑔𝛼𝛽 → 𝑔′𝛼𝛽(𝑦) = 𝜕𝑥𝜇𝜕𝑦𝛼 𝜕𝑥𝜇𝜕𝑦𝛽 𝑔𝜇𝜈(𝑥) (10)
Meaning the metric must be a rank 2-tensor! We can also notice, that if we take just the two terms: 𝑉 𝜇𝑔𝜇𝜈 ,
then this quantity transforms in the following way:𝑉 𝜇𝑔𝜇𝜈 → (𝑉 ′)𝜇𝑔′𝜇𝜈 = 𝜕𝑦𝜇𝜕𝑥𝛾 𝑉 𝛾𝑔𝛼𝛽 𝜕𝑥𝛼𝜕𝑦𝜇 𝜕𝑥𝛽𝜕𝑦𝜈 = 𝛿𝛼𝛾 𝑉 𝛾𝑔𝛼𝛽 𝜕𝑥𝛽𝜕𝑦𝜈 = 𝜕𝑥𝛽𝜕𝑦𝜈 𝑉 𝛼𝑔𝛼𝛽
I.e. this quantity transforms like a co-vector with one lower index. Precisely for this reason this quantity is
denoted 𝑉𝜈 ≔ 𝑔𝜈𝜇𝑉 𝜇 (11)
We can notice one more fact about the metric tensor. If we combine the fact that it must be symmetric,
with the fact that it must have non zero eigenvalues¹, then we can conclude that the metric tensor 𝑔 must
have an inverse 𝑔−1. This inverse can be denoted 𝑔𝜇𝜈 and then we have that:

¹This follows from the fact that the only vector with zero length is the zero vector.
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General Relativity Lecture Series 11 The Metric Tensor𝑔𝜇𝜈𝑔𝜈𝛾 = 𝛿𝛾𝜇
This allows us to manipulate expressions by acting with the metric or its inverse to expressions with index’s.
For example if we act on both sides of 11 with 𝑔𝛾𝜈 :𝑔𝛾𝜈𝑉𝜈 = 𝑔𝛾𝜈𝑔𝜈𝜇𝑉 𝜇 = 𝛿𝛾𝜇𝑉 𝜇 = 𝑉 𝛾
In this sense we think about the metric as an object that raises or lowers indices.
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