
General Relativity Lecture Series 11 The Metric Tensor

Lecture 4
In this lecture we talk about why the regular partial derivative does not form a tneosr, introduce the co-
variant derivative and derive the Christoffel symbols.

12 The 4-Derivative
In any continuous theory we will of course expect the derivative to be an important object in the theory.
In terms of the index notation we have been using so far we can write the traditional derivative using the
following notation: 𝜕𝜇 := 𝜕𝜕𝑥𝜇
We can see immediately see the reason for giving this quantity a lower index is that under a co-ordinate
transformation 𝑥𝜇 → 𝑦𝜇, by the chain rule we have that:𝜕𝜕𝑥𝜇 → 𝜕𝑦𝜈𝜕𝑥𝜇 𝜕𝜕𝑦𝜈 = 𝜕𝑦𝜈𝜕𝑥𝜇 𝜕′𝜈 ⇒ 𝜕′𝜈 = 𝜕𝑥𝜇𝜕𝑦𝜈 𝜕𝜇 (11)
That is, it transforms like a co-vector, hence the lower index. The presence of an index like this may give
us the sense of security that this object, which by itself transforms like a tensor, is perfectly usable and will
allow us to satisfy the principle of general co-variance. However, consider the following quantity. If we apply
this 4-derivative to a 4-vector (contravariant) 𝑉 𝜇. Then this creates a scalar quantity, like the divergence
of a vector field: 𝜕𝜇𝑉 𝜇 = 𝜕0𝑉 0 + 𝜕1𝑉 1 + 𝜕2𝑉 2 + 𝜕3𝑉 3
But if what happens if we transform co-ordinates from 𝑥𝜇 → 𝑦𝜇? Well 𝑉 𝜇 transforms via 8 and 𝜕𝜇 via 11
resulting in: 𝜕𝜇𝑉 𝜈 → 𝜕′𝜇(𝑉 ′)𝜈 = 𝜕𝑥𝛼𝜕𝑦𝜇 𝜕𝛼(𝜕𝑦𝜈𝜕𝑥𝛽 𝑉 𝛽) = 𝜕𝑥𝛼𝜕𝑦𝜇 𝜕𝑦𝜈𝜕𝑥𝛽 𝜕𝛼𝑉 𝛽 + 𝜕𝑥𝛼𝜕𝑦𝜇 𝜕2𝑦𝜈𝜕𝑥𝛼𝑥𝛽 𝑉 𝛼
The first time on the RHS here looks exactly like the transformation that we would expect, but the second
term completely rules out this quantity from being co-variant, despite the proper use of indices. This
behavior of 𝜕𝜇 is not much of an issue in special relativity, as there the spacetime is flat and uniform, so
there is not need for transformation of co-ordinates that are not linear. The most common transformation,
a Lorentz transformation as seen in 3, is an example of such linear transformation, hence the second term
in the above expression would vanish leaving a co-variant expression. This is equivalent to saying special
relativity only deals with inertial frames.

13 The Co-variant Derivative
In GR however we have gathered that spacetime will need to curved and we want to be able to describe
physics in non-inertia frames, hence we will ultimately need to need objects that are co-variant. This rules
out 𝜕𝜇 as being a suitable candidate. The goal then will then be to create some object ∇ that is co-variant
and reduces to the regular 𝜕𝜇 when space-time becomes flat. There are some properties of the derivative
that this co-variant must satisfy, for us to consider it a derivative.
1. Linearity: ∇(𝛼𝑉 + 𝛽𝑈) = 𝛼∇𝑉 + 𝛽∇𝑈  (for constants 𝛼 and 𝛽).
2. Leibniz rule: ∇(𝑈𝑉 ) = 𝑈(∇𝑉 ) + (∇𝑈)𝑉
These two properties make the derivative a linear operator. If we want the co-variant derivative to behave
like a tensor we will also need to impose the following conditions:
3. Reduces to the partial derivative on Scalars: ∇𝜇𝜙 = 𝜕𝜇𝜙
4. Commutes with the contraction of indices: ∇𝜇(𝑇 𝜈𝛾     𝛾) = (∇𝑇)  𝜈𝛾𝜇    𝛾
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If we want to figure out the action of this operator on a vector we can first figure out how it acts on basis
vectors. Recall from 5 that we denote our basis vectors 𝑏𝜇. One thing we need to be careful of is how these
vectors change at different points in space. When we move from one point to the next in a curved space
time the space that the vectors in (known as the tangent space) can rotate and twist, making it very hard
to compare vectors at different points. The process of deciding how to compare vectors at different points
is not unique and we will have to make some choices to properly define it. For now we can simply assume
that if at point 𝑝 our basis vectors are given by 𝑏𝜇 then at the locally close point 𝑝′ we can assume the
basis at 𝑝′, 𝑏′𝜇 is related to the basis at 𝑝 by some matrix transformation:𝑏′𝜇 = 𝑐𝜈  𝜇𝑏𝜈
If 𝑝 = 𝑝′ then we would have that 𝑏𝜇 = 𝑏′𝜇 ⇒ 𝑐𝜈  𝜇 = 𝛿𝜈𝜇, so if 𝑝′ is infinitesimally close to 𝑝, we should be
able to expand the coefficients of the matrix 𝑐𝜈  𝜇 as:𝑐𝜈  𝜇 = 𝛿𝜈𝜇 + 𝜖Γ𝜈  𝜇 + 𝒪(𝜖2)
Note that expanding to linear order will also work to satisfy the condition that the derivative be linear.
With this we can go ahead and define the derivative in the traditional way:∇𝑏𝜇 = lim𝜖→0 𝑏′𝜇 − 𝑏𝜇𝜖 = (𝑐𝜈  𝜇 − 𝛿𝜈𝜇)𝑏𝜈𝜖 = Γ𝜈  𝜇𝑏𝜈 (12)
But remember that the co-variant derivative has an index, as we can ask how the basis changes if we move
in any direction. This means there is one of these matrices (Γ𝜌)𝜈  𝜇 for each direction indexed by 𝜌. Often
the following notation is used to refer to all these coefficients:(Γ𝜌)𝜈  𝜇 ≔ Γ𝜈𝜌𝜇
These numbers are collectively known as the Connection as they connect vectors at different points in
space, allowing them to be compared. With this definition, 12 becomes:∇𝜌𝑏𝜇 = Γ𝜈𝜌𝜇𝑏𝜈 (13)
With this under out belt we can now figure out how the co-variant derivative acts on vectors 𝑉 = 𝑉 𝜇𝑏𝜇:∇𝜌𝑉 = ∇𝜌(𝑉 𝜇𝑏𝜇) = (𝜕𝜌𝑉 𝜇)𝑏𝜇 + 𝑉 𝜇∇𝜌𝑏𝜇 = (𝜕𝜌𝑉 𝜈 + 𝑉 𝜇Γ𝜈𝜌𝜇)𝑏𝜈
Where we have used the fact that the components 𝑉 𝜇 are just numbers, so using property 3: (∇𝜌𝑉 𝜇) =𝜕𝜌𝑉 𝜇. What this equation tells us is that:(∇𝜌𝑉 )𝜈 = 𝜕𝜌𝑉 𝜈 + 𝑉 𝜇Γ𝜈𝜌𝜇 (14)
That is, it tells us what the components of the co-variant derivative of any vector are. Now unfortunately, I
have to break some bad news to you here. So far index notation had been our best of friend and has greatly
simplified the notation we have been using. However, here it fails pretty bad. The common way to write the
quantity we have just dealt with, namely (∇𝜌𝑉 )𝜈 is to forget the brackets and write ∇𝜌𝑉 𝜈 , notice this is
very confusing, as I already told you that the co-variant derivative of the quantity 𝑉 𝜇 alone is (∇𝜌𝑉 𝜇) =𝜕𝜌𝑉 𝜇. But alas this is the notation that people have settled on. Just be wary that this is what most people
mean. The same applies to the co-variant derivative of tensors.
Extending our above result 14 to finding the co-variant derivative of co-vectors and tensors is not too
difficult if we consider the following argument. We know that the quantity 𝑉 𝜇𝑈𝜇 is a scalar meaning, by
property 3 the co-variant derivative of this quantity must give us: ∇𝜌(𝑉 𝜇𝑈𝜇) = 𝜕𝜌(𝑉 𝜇𝑈𝜇), but we can also
use Leibniz rule to expand:
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General Relativity Lecture Series 13 The Co-variant Derivative∇𝜌(𝑉 𝜇𝑈𝜇) = (∇𝜌𝑉 𝜇)𝑈𝜇 + 𝑉 𝜇(∇𝜌𝑈𝜇) = 𝜕𝜌(𝑉 𝜇𝑈𝜇) = (𝜕𝜌𝑉 𝜇)𝑈𝜇 + 𝑉 𝜇(𝜕𝜌𝑈𝜇)⇒ (𝜕𝜌𝑉 𝜇 + 𝑉 𝜈Γ𝜇𝜌𝜈)𝑈𝜇 + 𝑉 𝜇(∇𝜌𝑈𝜇) = (𝜕𝜌𝑉 𝜇)𝑈𝜇 + 𝑉 𝜇(𝜕𝜌𝑈𝜇)⇒ 𝑉 𝜇(∇𝜌𝑈𝜇) = 𝑉 𝜇(𝜕𝜌𝑈𝜇) − 𝑉 𝜈Γ𝜇𝜌𝜈𝑈𝜇
So we have that the co-variant derivative acting on a co-vector has the following components:∇𝜌𝑈𝜇 = 𝜕𝜌𝑈𝜇 − Γ𝜇𝜌𝜈𝑈𝜇
(Again what is really meant here is (∇𝜌𝑈)𝜇). One can use this argument and extend it to find out how the
co-variant derivative acts on all tensors. Doing this one finds:∇𝜌𝑇 𝜇1…𝜇𝑘          𝜈1…𝜈𝑠 = 𝜕𝜌𝑇 𝜇1…𝜇𝑘          𝜈1…𝜈𝑠 + ∑𝑘𝑎=1 Γ𝜇𝑎𝜌𝜎 𝑇 𝜇1…𝜎…𝜇𝑘          𝜈1…𝜈𝑠 − ∑𝑠𝑎=1 Γ𝜎𝜌𝜈𝑎𝑇 𝜇1…𝜎…𝜇𝑘          𝜈1…𝜎…𝜈𝑠 (15)
14 Christoffel Symbols
Now that we know the form of the co-variant derivative, we are left with some choices. The symbols² Γ𝜇𝜌𝜈 are
not unique given the 4 conditions we have imposed on the co-variant derivative so far. In order to obtain
a unique connection we will impose the following two conditions:
5. The connection is torsion free: Γ𝜇𝜌𝜈 = Γ𝜇𝜈𝜌
6. Metric compatibility: ∇𝜌𝑔𝜇𝜈 = 0
Note that this fifth condition is called torsion free, as one can define a Tensor known as the torsion tensor
by the difference 𝑇 𝜇𝜌𝜈 = Γ𝜇𝜌𝜈 − Γ𝜇𝜈𝜌, and we are imposing that this tensor is 0. This is special to GR and there
are actually other theories of gravity where this torsion tensor is non-zero and has a role to play.
We can then proceed to use condition 6 to find the form of the connection in GR. Using 15, and noticing
that ∇𝜌𝑔𝜇𝜈 = 0 must be true for any permutation of the indices we can write:∇𝜌𝑔𝜇𝜈 = 𝜕𝜌𝑔𝜇𝜈 − Γ𝜎𝜌𝜇𝑔𝜎𝜈 − Γ𝜎𝜌𝜈𝑔𝜇𝜎 = 0∇𝜇𝑔𝜈𝜌 = 𝜕𝜇𝑔𝜈𝜌 − Γ𝜎𝜇𝜈𝑔𝜎𝜌 − Γ𝜎𝜇𝜌𝑔𝜈𝜎 = 0∇𝜈𝑔𝜌𝜇 = 𝜕𝜈𝑔𝜌𝜇 − Γ𝜎𝜈𝜌𝑔𝜎𝜇 − Γ𝜎𝜈𝜇𝑔𝜌𝜎 = 0
We can then add the first two equations together and take away the third:𝜕𝜌𝑔𝜇𝜈 + 𝜕𝜇𝑔𝜈𝜌 − 𝜕𝜈𝑔𝜌𝜇 − Γ𝜎𝜌𝜇𝑔𝜎𝜈 − Γ𝜎𝜌𝜇𝑔𝜈𝜎 − Γ𝜎𝜇𝜈𝑔𝜎𝜌 − Γ𝜎𝜇𝜌𝑔𝜈𝜎 + Γ𝜎𝜈𝜌𝑔𝜎𝜇 + Γ𝜎𝜈𝜇𝑔𝜌𝜎 = 0⇒ 2Γ𝜎𝜌𝜇𝑔𝜎𝜈 = 𝜕𝜌𝑔𝜇𝜈 + 𝜕𝜇𝑔𝜈𝜌 − 𝜕𝜈𝑔𝜌𝜇⇒ Γ𝛼𝜌𝜇 = 12𝑔𝜈𝛼(𝜕𝜌𝑔𝜇𝜈 + 𝜕𝜇𝑔𝜈𝜌 − 𝜕𝜈𝑔𝜌𝜇) (16)
Where we have used the torsion free property to cancel some of the Γ𝜎𝜈𝜇 symbols. Also in the last step we
have applied the inverse metric to both sides in order to isolate Γ𝛼𝜌𝜇. This specific connection coeffecents
we have derived are known as the Christoffel symbols, or the Levi-Civita connection. Note that as
mentioned before they are not tensors, so one needs to calculate these symbols for every co-ordinate system
seperatly.
As a sanity check we can try figure out what these symbols look like for flat spacetime, in this scenario, if
we stick to cartesian co-ordinates the metric will be given by the Minkowski metric 4. Here the metric is
independent of any of the co-ordinate variables, so all the derivatives in 16 vanish, meaning Γ𝛼𝜌𝜇 = 0. This
makes sense as the co-variant derivative reduces to the partial derivative as needed.
Note even if the space is flat there will still be some co-ordinates that have non zero Christoffel symbols,
for example spherical co-ordinates in flat space time.

²Note that I am not calling this quantity a tensor as it can be shown that it does not transform like one, just like the partial
derivative 𝜕𝜇
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