
General Relativity Lecture Series 14 Christoffel Symbols

Lecture 5
In this lecture we will discuss parallel transport and the geodesics of point particles.

15 Parallel Transport
Having drastically altered the ideas of Newtonian physics to encorperate curved spacetime, we now need
to try rebuild the laws of physics that objects obey in this new theory. In Newtonian mechanics, Newtons
first law stated that a body either remains at rest or travels in a straight line unless acted on some force.
How can we rephrase this in the new language of curved space that we have created. Clearly if gravity is
no longer a force and simply a manifestation of the curvature of spacetime, then this law no longer holds
for gravity. Instead objects acted upon by no fores will sometimes take curved trajectories. How to do we
know what trajectories they will follow? To answer this question we will need to develop the concept of
parallel transport.
In flat space “a body traveling in a straight line” translates to the velocity vector of a trajectory is constant,
in that it does not change through out space. We can sum this up as along the direction of motion of the
trajectory (which we can achieve by dotting with the tangent vector 𝑉 𝜇) the vector field should not change:𝑉 𝜇𝜕𝜇𝑉 𝜈 = 0
Visually the vector that goes in a straight line is always parallel to itself if we compare it at any two
points, hence another way of thinking about this is to say that the vector parallel transports itself along
the straight line. But how does this work in curved spacetime, where the bases are no longer constant.
If we look back at equation 15 it breaks down what happens to a vector as you move along an axis in space
in a remarkably simple way. As you go from one point to the next in space or spacetime, the vector changes
for two reasons. The first is the simple intrinsic change in the vector 𝑉  as you travel along some path. This
occurs in any non-trivial vector field and its contribution to the co-variant derivative is the first term in 15,
given by the partial derivative of 𝑉 𝜇. The second type of change is a change in the basis vectors that the
vector is expanded over. Equation 14 tells us how the bases vectors change from point to point in curved
spacetime and this contribution is seen exactly in the second term of 15.
So what we see is that in curved space is that a vector parallel transporting itself can no longer travel in a
straight line due to the movement of the bases. So we need a new condition other then 𝑉 𝜇𝜕𝜇𝑉 𝜈 = 0. This
condition must hold in all co-ordinates (hence be a tensor), and must reflect the 𝑉 𝜇𝜕𝜇𝑉 𝜈 condition + the
offset due to the bases. This is exactly given by the dotting of 𝑉 𝜇 with the co-variant derivative. So we say
a vector parallel transports itself if: 𝑉 𝜇∇𝜇𝑉 𝜈 = 0 (18)
Sometimes this is also written as ∇𝑉 𝑉 𝜈 = 0. Using 15 we can expand out this equation. Note that we are
often concerned with the trajectory 𝑥𝜇(𝜆) to which our vector 𝑉 𝜇 = 𝑑𝑥𝜇𝑑𝜆  is tangent to. So in terms of the
trajectory the parallel transport equation 18 says:𝑑𝑥𝜇𝑑𝜆 (𝜕𝜇𝑉 𝜈 + Γ𝜈𝜇𝜎𝑉 𝜎) = 0= 𝑑2𝑥𝜇𝑑𝜆2 + Γ𝜈𝜇𝜎 𝑑𝑥𝜈𝑑𝜆 𝑑𝑥𝜎𝑑𝜆 = 0 (19)
Where we have recognized the chain rule on the first term. A nice sanity check is that if we are in flat
spacetime then all the Γ𝜈𝜇𝜎 = 0 and this reduces to 𝑑2𝑥𝜇𝑑𝜆2 = 0, which is the equation for a straight line.
Note also that parallel transport is not limited to vectors transporting themselves, we can also have that a
vector 𝑊𝜇 is transported along the trajectory 𝑥𝜇(𝜆) if:𝑉 𝜇∇𝜇𝑊𝜇 = 0 (20)
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Where 𝑉 𝜇 = 𝑑𝑥𝜇𝑑𝜆  is the tangent vector to the trajectory. In this sense the vector 𝑊𝜇 is transported along
the trajectory in a way that keeps it “fixed” in the same direction the most.

16 Action for point particles
We have derived an equation that mimics Newtons first Law, this is very useful and allows us to calculate
many things. But just like in classical mechanics, the existence of a law like this is only as useful as
it is solvable. In more complicated spacetimes this differential equation may become very coupled and
complicated, and we may need a different formalism if we want to solve these problems.
An alternate way of looking at the problem is the Lagrangian formulation of mechanics. Here we say that
the trajectory that the particle actually takes, maximizes (or minimizes) some quantity 𝑆 which we call
the action. Specifically we then say there is a function called the Lagrangian 𝐿 that takes values for each
possible postilion 𝑞 and velocity ̇𝑞 of the particle and that the action is just the accumulation of this quantity
along the trajectory traveled. It is convenient to parameterize the trajectories with time such that:𝑆 = ∫𝐿(𝑞, ̇𝑞)𝑑𝑡
The purpose of having a quantity that depends on the 𝑞’s and ̇𝑞’s along the trajectory is that it allows us
to tell apart the different trajectories and find the one which extremizes the overall action by methods of
calculus of variations. The result of this, is that the Lagrangian which does extremize the action must obey
the following second order differential equation, known as the Euler-Lagrange equation:𝑑𝑑𝑡(𝜕𝐿𝜕 ̇𝑞 ) − 𝜕𝐿𝜕𝑞 = 0 (21)
In classical mechanics for example, for single particles with mass 𝑚, we can see that if we have the
Lagrangian be the kinetic energy 𝑇 = 12𝑚 ̇𝑞2 minus the potential 𝑈(𝑞), so 𝐿 = 12𝑚 ̇𝑞2 − 𝑈(𝑞). Then the Euler
Lagrange equation 21 reads: 𝑚𝑑 ̇𝑞𝑑𝑡 = −𝜕𝑈𝜕𝑞
If we recall that −𝜕𝑈𝜕𝑞  is equal to the force experienced by the mass 𝑚, then we can see that this particular
Lagrangian recovered Newton’s third Law, and hence most of classical mechanics.
When we want to write down the action for other situations such as here in General relativity it is difficult
to know where to start. But if we notice a few things it can be made easier.
1. The action is a scalar quantity, it doesn’t have any indices and should be Lorentz invariant. This means

it must be made from the contraction of indices as we saw in lecture 3.
2. Reparametrization invariance, the parametrization used to describe the trajectory should not be unique

other wise that would pick out a preferred time and hence a preferred frame.
We can then begin to think about the setup. We are considering a particle in space traveling from a event𝑦 to an event 𝑥 in some arbitrary curved spacetime described by some metric 𝑔𝜇𝜈 . We then want to list
the quantities that we can use to build our action. In terms of “vector” quantities we have the position
vectors 𝑥𝜇1  and 𝑥𝜇2 , or more relevantly their difference 𝑥𝜇2 − 𝑥𝜇1 . The only scalars we have are the mass 𝑚 of
the particle and maybe the constants 𝑐 and 𝐺. For simplicity from here on we can let the point 𝑥𝜇1  be the
origin. Then the only quantity we an make out of contractions is 𝑥𝜈2𝑔𝜇𝜈𝑥𝜇2 = (𝑥2)𝜇(𝑥2)𝜇 = 𝜏2, which you
may recall from lecture 2 is the proper time of the particle.
But hold on a minuet, we have accidentally commited a faux pas here. When we wrote (𝑥𝜇1 − 𝑥𝜇2 ) we
implicitly compared two position vectors at different points. This may seem fine as they are position vectors
not proper vectors in the tangent space, but the main issue arises when we contract (𝑥𝜇1 − 𝑥𝜇2 ) with the
metric. The metric is a function of 𝑥 so at which point do we evaluate it? 𝑥1? 𝑥2? There is no preferred
choice. The point is we cannot compare finitely separated points using the metric, only infinitesimally
close points.
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Luckily this is inline with the concept of the Lagrangian. We can pick some We can pick some 𝜆 to
parameterize the trajectory, and then integrate along this to obtain the action, while only comparing local
points. Having introduced a new variable, we unlock new possible building blocks in 𝑑𝑥𝜇𝑑𝜆  and possibly higher
derivatives. If our integral takes the form ∫(⋅ ⋅ ⋅)𝑑𝜆, then we can clearly see the only Lorentz invariant and
preserves reparametrization is: 𝑆 ∝ ∫√𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝑑𝜆
The reparametrization invariance comes from the fact that if we change from 𝜆 to some some other
parameter 𝛼 then from the chain rule ∫√𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝑑𝜆 → ∫√𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝛼 𝑑𝛼𝑑𝜆 𝑑𝑥𝜈𝑑𝛼 𝑑𝛼𝑑𝜆 𝑑𝜆𝑑𝛼𝑑𝛼 = ∫√𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝛼 𝑑𝑥𝜈𝑑𝛼 𝑑𝛼.
You should convince your self that this is the only possible combination that satisfies the two conditions.
The last thing to do is to figure out the units out of our remaining blocks 𝑚, 𝑐,𝐺. The current quantity
has units length, which means we need to multiply it by a mass and a velocity scale, hence the nice clean
choice is: 𝑆 = −𝑚𝑐∫√𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝑑𝜆
We didn’t involve 𝐺 as in the flat space limit 𝑔𝜇𝜈 → 𝜂𝜇𝜈 and hence it would not make sense to a have
prefactor involving 𝐺 for flat space. Lastly we can notice that using the line element we can write this very
cleanly as: 𝑆 = −𝑚𝑐∫𝑑𝑠
The minus sign and this choice of constants prefactor can be shown to reduce to the 𝐿 = 12𝑚𝑣2 in the flat
space and non relativistic (𝑐 → ∞) limit. Physically this result means that the trajectory that particles
follow is the one that extremizes the distance (proper time) between two events. These types of trajectories
are known as geodesics.
One may then ask is the proper time maximized or minimized on these trajectories? Tot which the following
argument answers nicely. Let us guess that the proper time is minimized. But then we can consider the
path of a light ray that zigs and zags to follow the trajectory of the particle. Light rays have (in the
limit as one approaches the speed of light) 0 proper time along their trajectories. Hence, these trajectories
cannot minimize proper time as they are always infinitesimally close to a path that has less proper time.
Hence we can only conclude that these geodesics maximize proper time. This has some fun and powerful
consequences. For example we can use it to resolve the twin paradox! The twin that stays at home and does
not go off accelerating in a ship follows a geodesic and hence must be the older twin when they return!

17 Eom from the Action
Now that we have a suitable action principle that uniquely satisfies our requirements we want to put it
to the test and see if it reproduces the parallel transport equation 19 above. The procedure we need to
carry out is to apply the Euler Lagrange equations 21 to this action. However, with all the indices and the
metric now being a function of 𝑥, this can get messy very fast. To make life easier for ourselves we can
notice the following. What we are doing in using the Euler Lagrange equations is extremizing the action
by setting 𝛿𝑆 = ∫ 𝛿𝐿𝑑𝜆 = 0. But what if we defined the quantity 𝐺 = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆  such that 𝐿 = √𝐺. Since
the variation 𝛿 is just like a derivative but for functionals, we have that 𝛿𝐿 = 𝛿(√𝐺) = 12 𝛿𝐺√𝐺 . But quite
nicely, this implies that if 𝛿𝐿 = 0 ⇒ 𝛿𝐺 = 0. This means inseatd of using our complicated action with a
square root we can simply use: 𝑆′ = ∫𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝑑𝜆
With this new action we can now apply the equations of motion 21 for each component:
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General Relativity Lecture Series 17 Eom from the Action𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝜕𝛼𝑔𝜇𝜈 = 𝑑𝑑𝜆[𝑔𝜇𝜈 𝜕𝜕 ̇𝑥𝛼 ( ̇𝑥𝜇 ̇𝑥𝜈)] = 𝑑𝑑𝜆[2𝑔𝛼𝜇 𝑑𝑥𝜇𝑑𝜆 ]
Where we have used the fact that 𝑑𝑥𝜇𝑑𝜆  must be independent of 𝑥 and have denoted ̇𝑥𝛼 = 𝑑𝑥𝛼𝑑𝜆 . When we
take the derivative of 𝑔𝜇𝜈 wrt 𝜆 we can use the chain rule to write 𝑑𝑔𝛼𝜇𝑑𝜆 = 𝜕𝑔𝛼𝜇𝜕𝑥𝛾 𝑑𝑥𝛾𝑑𝜆 . This means:𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝜈𝑑𝜆 𝜕𝛼𝑔𝜇𝜈 = 2𝜕𝛾𝑔𝛼𝜇 𝑑𝑥𝛾𝑑𝜆 𝑑𝑥𝜇𝑑𝜆 + 2𝑔𝛼𝜇 𝑑2𝑥𝜇𝑑𝜆2
We can then relabel indices on this middle terms such that 2𝜕𝛾𝑔𝛼𝜇 𝑑𝑥𝛾𝑑𝜆 𝑑𝑥𝜇𝑑𝜆 = 𝜕𝛾𝑔𝜇𝛼 𝑑𝑥𝜇𝑑𝜆 𝑑𝑥𝛾𝑑𝜆 + 𝜕𝛾𝑔𝛼𝜇 𝑑𝑥𝛾𝑑𝜆 𝑑𝑥𝜇𝑑𝜆 .
Also changing the 𝜈 label on the HS to 𝛾, we are just left with:[𝜕𝛾𝑔𝜇𝛼 + 𝜕𝛾𝑔𝛼𝜇 − 𝜕𝛼𝑔𝜇𝛾]𝑑𝑥𝛾𝑑𝜆 𝑑𝑥𝜇𝑑𝜆 + 2𝑔𝛼𝜇 𝑑2𝑥𝜇𝑑𝜆2 = 0⇒ 𝑑2𝑥𝜈𝑑𝜆2 + 12𝑔𝜈𝛼[𝜕𝛾𝑔𝜇𝛼 + 𝜕𝛾𝑔𝛼𝜇 − 𝜕𝛼𝑔𝜇𝛾]𝑑𝑥𝛾𝑑𝜆 𝑑𝑥𝜇𝑑𝜆 = 0
We can then recognize that this equation is the exact same as the parallel transport 19! We can actually
say something stronger. We can say that the choice of metric compatibility is equivalent to requiring that
the equation of motion that our particles follow is the parallel transport equation.
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