

# Dynamical Dark Energy from Causal Set Theory

Thomas Brosnan

5th December 2025

# Outline

- ① **Dark Energy**
- ② **Causal Set Theory**
- ③ **Everpresent Lambda**

# Dark Energy

---

# What is Dark Energy?

- Dark Energy is the name we give to the source of the accelerated expansion of our universe.
- In our current best cosmological models ( $\Lambda$ CDM) Dark Energy makes up almost 70% of the energy density of the universe, yet we have no idea what it is!
- Our Current best explanation is a cosmological constant  $\Lambda$  in the Einstein Hilbert action:

$$S_{EH} = \frac{1}{16\pi G} \int (R - 2\Lambda) \sqrt{-g} \implies R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

- This works well as in a FLRW universe, it gives rise to a constant energy density (no matter the size of the universe) and hence the scale factor grows as  $a(t) \sim e^{Ht}$ .

# Problems with the Cosmological Constant

- Naive expectation: Cosmological constant is due to the energy density of the vacuum, which, by Lorentz invariance must have a stress energy tensor of the form:

$$\langle T_{\mu\nu} \rangle = -\langle \rho \rangle g_{\mu\nu}$$

- But from Quantum Field Theory we would expect a vacuum energy of:

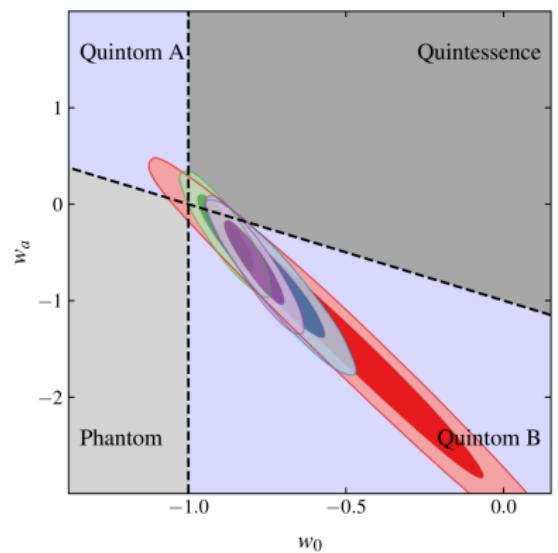
$$\langle \rho \rangle = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2} \omega_p = \frac{1}{4\pi^2} \int_0^{k_{\max}} dk k^2 \sqrt{k^2 + m^2} \simeq \frac{k_{\max}^4}{16\pi^2}$$

- Taking cutoff to be related to the Planck Mass  $k_{\max} = m_p = \sqrt{\frac{1}{8\pi G}}$  ( $c = 1 = \hbar$ ), gives an energy density of:

$$\langle \rho \rangle \simeq 2 \times 10^{71} \text{ GeV}^4 \implies \Lambda_{\langle \rho \rangle} = 8\pi G \langle \rho \rangle \simeq 4 \times 10^{34} \text{ GeV}^2$$

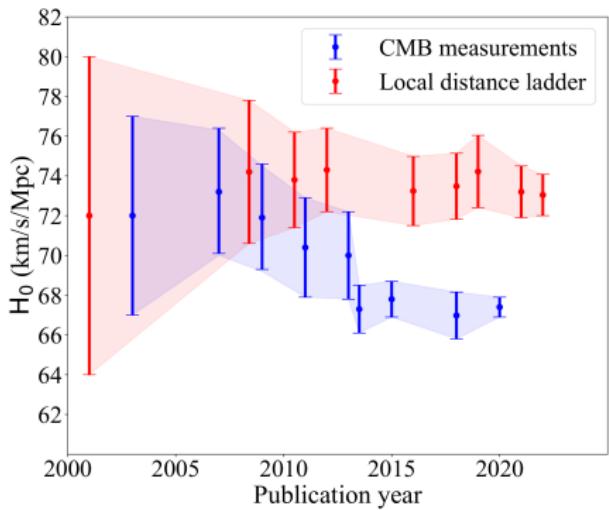
# Problems with the Cosmological Constant

- Lets see how that prediction does, the current measured value of the cosmological constant is:


$$\Lambda \simeq 6 \times 10^{-85} \text{ GeV}^2$$

- Sometimes this is classed as the worst prediction in physics ever.

# More Problems with the Cosmological Constant


- $\Lambda$  may not even be constant!
- New DESI data has recently (Sep 2025) been analysed, showing that a constant equation of state is not the best fit of the data.
- Currently the discrepancy is around  $2-3 \sigma$

■ DR2      ■ DR2 + PantheonPlus  
■ DR2 + Union3      ■ DR2 + DESY5



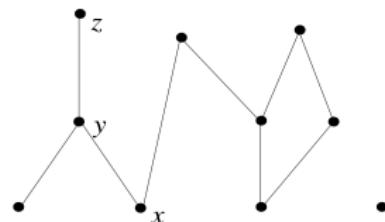
# More Problems with the Cosmological Constant

- The Hubble Tension
- The two ways of measure the rate of expansion of our universe today give contradicting results
- Here the tension is at around  $5\sigma$ .



- Even more problems: Cosmic Co-Incidence problem, why is the energy density of matter  $\rho_m \simeq \rho_\Lambda$ ?

# Proposed Explanations of $\Lambda$


- Quintessence (fifth force): Scalar field that gives rise Dark energy. It can have a dynamical equation of state.
- Modifications of General Relativity such as Massive Gravity.
- Causal Set Theory: see rest of presentation!
- Anthropic principle.

# Causal Set Theory

---

# What is Causal Set Theory?

- Causal Set Theory is a discrete approach to Quantum Gravity that postulates spacetime to be fundamentally discrete
- Formally a Causal Set must be:
  - ① Reflexive:  $x \preceq x$ .
  - ② Acyclic:  $x \preceq y \preceq x \Rightarrow x = y$ .
  - ③ Transitive:  $x \preceq y \preceq z \Rightarrow x \preceq z$ .
  - ④ Local Finiteness:  $|[x, y]| < \infty$ .
- Two key take aways: Causal Sets are discrete and preserve causality.



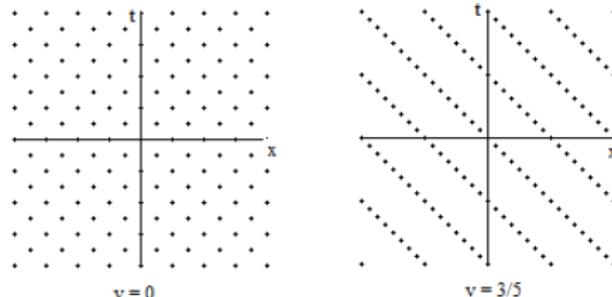
# Why do we want Causal Set Theory?

- The main idea, is that quantum mechanics screams at us that there is a fundamental scale to physics.
- It is widely considered that the notion of spacetime ceases to make sense on scales smaller than the Planck length. But why discrete?
- Discreteness is the most natural solution to the “singularities” or “divergences” that plague a lot of modern physics:
  - ① QFT divergences in loop corrections
  - ② Curvature singularities at the centre of black holes.
  - ③ Divergence in entropy of a black hole.
- Causal Sets can alleviate these problems while still treating spacetime in a proper manner.

# Can Causal Set Theory Work?

- How can a discrete causal set describe all the intricacies of a continuous spacetime metric  $g_{\mu\nu}$ ?

## Theorem: Malament


Suppose  $(M, g)$  and  $(M', g')$  are two distinguishing Lorentzian manifolds and  $f : M \rightarrow M'$  is a chronological isomorphism, then  $f$  is a smooth conformal isometry (meaning  $f_*g = \Omega^2 g'$ , where  $\Omega : M \rightarrow \mathbb{R}$ ).

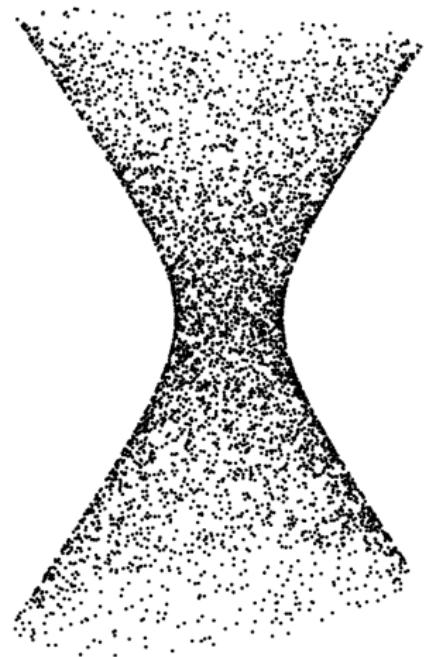
- This means that most of the information about the metric is contained in the causal structure.
- The rest comes from fixing the spacetime volume which Causal Set Theory does by counting elements.

Order + number = geometry

# How are Causal Sets Lorentz Invariant?

- Discrete lattices are not Lorentz Invariant:



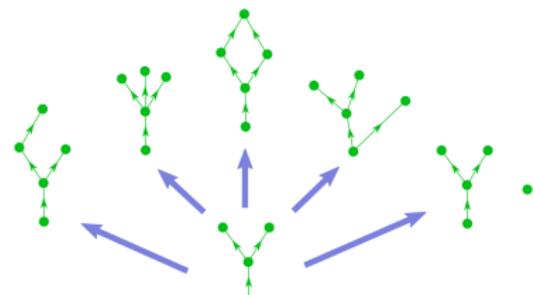

- A Causal Sets can be embedded into a given manifold via a “sprinkling” from a Poisson distribution:

$$P(N, V) = \frac{(\rho V)^N}{N!} e^{-\rho V}$$

- This is further supported by a Theorem by D.Meyer and R.Sorkin that says a causal set sprinkled into  $(M, g)$  approaches  $(M, g)$  in the infinite density limit.

# How are Causal Sets Lorentz Invariant?

- The Poisson distribution being a function of the spacetime volume  $V$  which is invariant under Lorentz transformations.
- This likely the only way of recovering continuous spacetime from a discrete structure.
- Random discreteness saves symmetry.




## Everpresent Lambda

---

# Dynamics of Causal Sets

- The most natural way for a causal set to evolve is for it to “grow”.
- Currently this is understood very well classically in the form of Classical Sequential Growth (CSG) models.
- A quantum version of this is not as well understood, though it is expected to follow some gravitational path integral formulation, which now becomes a sum over all possible causal sets:



$$Z(V) = \sum_M \int \mathcal{D}g e^{iS[g]} \rightarrow Z(N) = \sum_{|C|=N} e^{iS[C]}$$

- Following the CSG models,  $N$  and hence the volume  $V$  is kept constant. This means  $N$  (or  $V$ ) plays the role of time.

# Uni-modular Gravity

- Uni-modular gravity is a well studied theory of gravity where the volume is held constant and only diffeomorphisms that leave the volume element invariant are allowed.
- This form of gravity can be used to show why the large constants from QFT do not appear in Einstein's Equations.
- In uni-modular gravity there is no inherent cosmological constant, but it arises from imposing that the volume is constant.
- In a rough approximation this leads to a conjugacy between  $\Lambda$  and the volume  $V$  such that we can say quantum mechanically:

$$\Delta\Lambda\Delta V \sim \frac{1}{2}$$

- This is analogous to the relation between  $\Delta E\Delta t \sim \frac{1}{2}$  from non-relativistic QM.

# The Main Argument

- Our assumptions are:
  - ➊ Assumption 1: We keep the volume  $V$  fixed from which the unimodular gravity above that tells us  $\Delta\Lambda\Delta V \sim \frac{1}{2}$ .
  - ➋ Assumption 2: Spacetime is a causal set, obtained from sprinkled using the Poisson distribution into the continuous manifold we see.
- The Poisson distribution has two features of note.
  - ▶ The expected number of points in a region of Volume  $V$  is  $N = \rho V$ .
  - ▶ The standard deviation of the distribution is  $\Delta N = \sqrt{N}$
- These two together mean that a causal set with a fixed number of elements  $N$ , there are an ensemble of continuum spacetimes that it can resemble, with mean  $V = \rho N$  and standard deviation  $\Delta V = \sqrt{V}$ .

# The Causal Set Prediction

- We make one more assumption:
  - ③ Assumption 3: The mean value about which  $\Lambda$  fluctuates is 0 so that  $\Lambda \sim \Delta\Lambda$  (really we mean  $\Lambda \in [-\Delta\Lambda, \Delta\Lambda]$ )
- To get an order of magnitude estimate we can put everything together:

$$\Lambda \simeq \Delta\Lambda \simeq \frac{1}{2\Delta V} = \frac{1}{2\sqrt{V}}$$

- Putting this into numbers, we take  $V$  to be the volume of the past light cone of our current point, i.e. spatial size of observable universe times the age of the universe. This gives us a predicted magnitude of:

$$\Lambda_{CS} \simeq 1 \times 10^{-85} \text{ GeV}^2$$

# The Timeline of Events

- This argument was first fleshed out by Rafael Sorkin.

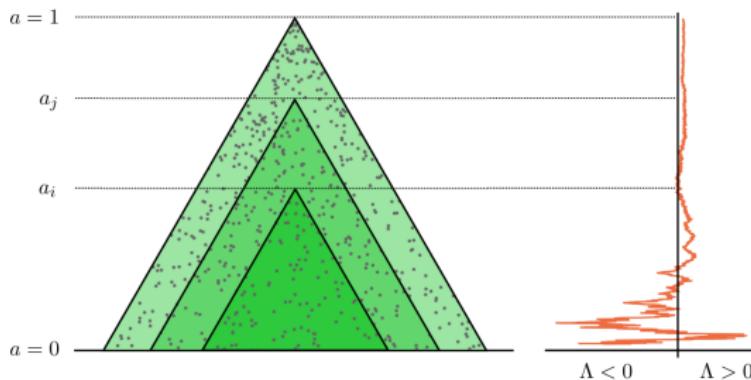
[23] R.D. Sorkin, “Spacetime and Causal Sets”, in J.C. D’Olivo, E. Nahmad-Achar, M. Rosenbaum, M.P. Ryan, L.F. Urrutia and F. Zertuche (eds.), *Relativity and Gravitation: Classical and Quantum*, (Proceedings of the *SILARG VII Conference*, held Cocoyoc, Mexico, December, 1990), pages 150-173, (World Scientific, Singapore, 1991), and references therein.



- But when was the Cosmological Constant First measured?

## THE HIGH-Z SUPERNOVA SEARCH: MEASURING COSMIC DECELERATION AND GLOBAL CURVATURE OF THE UNIVERSE USING TYPE Ia SUPERNOVAE<sup>1</sup>

BRIAN P. SCHMIDT,<sup>2</sup> NICHOLAS B. SUNTCZEFF,<sup>3</sup> M. M. PHILLIPS,<sup>3</sup> ROBERT A. SCHOMMER,<sup>3</sup> ALEJANDRO CLOCCHIATTI,<sup>3,4</sup>  
 ROBERT P. KIRSHNER,<sup>5</sup> PETER GARNAVICH,<sup>5</sup> PETER CHALLIS,<sup>5</sup> B. LEIBUNDGUT,<sup>6</sup> J. SPYROMILIO,<sup>6</sup> ADAM G. RIESS,<sup>5,7</sup>  
 ALEXEI V. FILIPPENKO,<sup>7</sup> MARIO HAMUY,<sup>8</sup> R. CHRIS SMITH,<sup>4,9</sup> CRAIG HOGAN,<sup>10</sup> CHRISTOPHER STUBBS,<sup>10</sup>  
 ALAN DIERCKS,<sup>10</sup> DAVID REISS,<sup>10</sup> RON GILLILAND,<sup>11</sup> JOHN TONRY,<sup>12</sup> JOSÉ MAZA,<sup>13</sup>  
 A. DRESSLER,<sup>14</sup> J. WALSH,<sup>6</sup> AND R. CIARDULLO<sup>15</sup>


Received 1997 December 30; accepted 1998 June 10

### ABSTRACT

- So this was a **prediction** of the Cosmological Constant! Not a **retrodiction**. At the time  $\Lambda$  was believed to be 0.

# Everpresent Lambda Cosmologies

- “Everpresent Lambda” models:  $\Lambda$  fluctuates dynamically.
- These models can alleviate the Hubble tension and are capable of producing realizations that fit SN-Ia data better than  $\Lambda$ CDM.
- Named so as  $\Lambda$  is always at a relevant energy scale. (alleviating the coincidence problem).



- In these models  $\Lambda$  can theoretically become negative, so evidence of this would be compelling evidence for Everpresent Lambda.

# Thanks for Listening!